
AutoPar: Automatic Parallelization of Functional
Programs

Michael Dever & G. W. Hamilton
{mdever, hamilton}@computing.dcu.ie

Dublin City University

Abstract. In this paper we present a novel, fully automatic transforma-
tion technique which parallelizes functional programs defined using any
data-type. In order to parallelize these programs our technique first de-
rives conversion functions which allow the data used by a given program
to be well-partitioned. Following this the given program is redefined to
make use of this well-partitioned data. Finally, the resulting program is
explicitly parallelized. In addition to the automatic parallelization tech-
nique, we also present the results of applying the technique to a sample
program.

1 Introduction

As the pervasiveness of parallel architectures in computing increases, so does the
need for efficiently implemented parallel software. However, the development of
parallel software is inherently more difficult than that of sequential software
as developers are typically comfortable developing sequentially and can have
problems thinking in a parallel setting [29]. Yet, as the limitations of single-core
processor speeds are reached, the developer has no choice but to reach for parallel
implementations to obtain the required performance increases.

Functional languages are well suited to parallelization due to their lack of
side-effects, a result of which is that their functions are stateless. Therefore,
one process executing a pure function on a set of data can have no impact on
another process executing a function on another set of data as long as there are no
data dependencies between them. This gives functional programs a semantically
transparent implicit task parallelism.

Due to the nature of functional languages, many functions make use of in-
termediate data-structures to generate results. The use of intermediate data-
structures can often result in inefficiencies, both in terms of execution time and
memory performance [38]. When evaluated in a parallel environment, the use of
intermediate data-structures can result in unnecessary communication between
parallel processes. Elimination of these intermediate data-structures is the moti-
vation for many functional language program transformation techniques, such as
that of distillation [14, 16] which is capable of obtaining a super-linear increase
in efficiency.

The automatic parallelization technique presented in this paper makes use of
our previously published automatic partitioning technique [9], which facilitates

12 Michael Dever, G. W. Hamilton

the partitioning of data of any type into a corresponding join-list. This is used
to generate functions which allow data of any type to be converted into a well-
partitioned join-list and also allow the data in a well-partitioned join-list to be
converted back to its original form.

Following the definition of these functions, we distill the given program which
results in an equivalent program defined in terms of a well-partitioned join-list, in
which the use of intermediate data-structures has been eliminated. Upon distill-
ing a program defined on a well-partitioned join-list, we then extract the paral-
lelizable expressions in the program. Finally, we apply another transformation to
the distilled program which parallelizes expressions operating on well-partitioned
join-lists.

The remainder of this paper is structured as follows: Section 2 describes
the language used throughout this paper. Section 3 describes how we imple-
ment explicit parallelization using Glasgow parallel Haskell. Section 4 presents
an overview of the distillation program transformation technique and describes
how we use distillation to convert programs into equivalent programs defined
on well-partitioned data. Section 5 describes our automatic parallelization tech-
nique. Section 6 presents the application of the automatic parallelization tech-
nique to a sample program. Section 7 presents a selection of related work and
compares our techniques with these works and Section 8 presents our conclu-
sions.

2 Language

The simple higher-order language to be used throughout this paper is shown in
Fig. 1. Within this language, a data-type T can be defined with the constructors
c1, . . . , cm each of which may include other types as parameters. Polymorphism
is supported in this language via the use of type variables, α. Constructors are
of a fixed arity, and within c e1 . . . ek, k must be equal to constructor c’s arity.
We use (e :: t) to denote an expression e of type t. Case expressions must only
have non-nested patterns. Techniques exist to transform nested patterns into
equivalent non-nested versions [1, 37].

Within this language, we use let x1 = e1 . . . xn = en in eo to represent a
series of nested let statements as shown below:

let x1 = e1 . . . xn = en in eo ≡ let x1 = e1
...
let xn = en
in e0

The type definitions for cons-lists and join-lists are as shown in Fig. 2. We use
the usual Haskell notation when dealing with cons-lists: [] represents an empty
cons-list, (Nil), [x] represents a cons-list containing one element, (Cons x Nil),
and (x : xs) represents the cons-list containing the head x and the tail xs,
(Cons x xs).

AutoPar: Automatic Parallelization of Functional Programs 13

t ::= α Type Variable
| T t1 . . . tg Type Application

data T α1 . . . αg ::= c1 t11 . . . t1n1
Data-Type

...
| cm tm1 . . . tmnm

e ::= x Variable
| c e1 . . . ek Constructor
| f Function
| λx.e Lambda Abstraction
| e0 e1 Application
| case e0 of p1 → e1 | . . . | pk → ek Case Expression
| let x1 = e1 in e0 Let Expression
| e0 where f1 = e1 . . . fn = en Where Expression

p ::= c x1 . . . xk Pattern

Fig. 1: Language Definition

data List a ::= Nil
| Cons a (List a)

data JList a ::= Singleton a
| Join (JList a) (JList a)

Fig. 2: cons-List and join-List Type Definitions

3 Glasgow Parallel Haskell

In order to parallelize the various programs described in this paper we make use
of Glasgow parallel Haskell (GpH) [36] which is an extension to Haskell. GpH
supports parallelism by using strategies for controlling the parallelism involved.
Parallelism is introduced via sparking (applying the par strategy) and evalu-
ation order is determined by applying the pseq strategy. As an example, the
expression x ′par′ y may spark the evaluation of x in parallel with that of y,
and is semantically equivalent to y. As a result of this, when using x ′par′ y,
the developer indicates that they believe evaluating x in parallel may be useful,
but leave it up to the runtime to determine whether or not the evaluation of x
is run in parallel with that of y [25]. pseq is used to control evaluation order as
x ′pseq′ y will strictly evaluate x before y. Usually, this is used because y cannot
be evaluated until x has been.

As an example, the expression x ′par′ (y ′pseq′ x+ y) sparks the evaluation
of x in parallel with the strict evaluation of y. After y has been evaluated, x+ y
is then evaluated. If the parallel evaluation of x has not been completed at this

14 Michael Dever, G. W. Hamilton

point, then it will be evaluated sequentially as part of x+ y. As a result of this
x ′par′ (y ′pseq′ x+ y) is semantically equivalent to x+ y, but we may see some
performance gain from sparking the evaluation of x in parallel. Below is a simple
example of the use of GpH, which calculates fibonacci numbers in parallel:

fib = λx.case x of
0 → 1
1 → 1
n → let x = fib (n − 1)

in let y = fib (n − 2)
in x ‘par ′ (y ‘pseq ′ x + y)

Given a number x, the function fib sparks the evaluation of fib (n − 1)
to weak-head normal form in parallel with the full evaluation of fib (n − 2).
When fib (n− 2) has been fully evaluated, it is then added to the result of the
evaluation of fib (n− 1). fib (n− 1) can be fully evaluated in parallel by having
the rdeepseq strategy applied to it.

We have selected Glasgow parallel Haskell for our implementation language,
due to its conceptual simplicity, its semantic transparency and its separation
of algorithm and strategy. Another reason for the selection of Glasgow parallel
Haskell is its management of threads: it handles the creation/deletion of threads,
and determines whether or not a thread should be sparked depending on the
number of threads currently executing.

4 Transforming Data to Well-Partitioned Join-Lists

There are many existing automated parallelization techniques [2–7, 10, 19–22,
26, 30, 31, 35], which, while powerful, require that their input programs are de-
fined using a cons-list, for which there is a straightforward conversion to a well-
partitioned join-list. This is an unreasonable burden to place upon a developer
as it may not be intuitive or practical to define their program in terms of a
cons-list.

To solve this problem we have previously defined a novel transformation
technique that allows for the automatic partitioning of an instance of any data-
type [9]. A high-level overview of the automatic partitioning technique is pre-
sented in Figure 3. We combine this technique with distillation in order to au-
tomatically convert a given program into one defined on well-partitioned data.
We do not give a full description of the automatic partitioning technique here,
it is sufficient to know that it consists of the following four steps:

1. Given a program defined on an instantiated data-type, τ , we use the defi-
nition of τ to define a corresponding data-type, τ ′, instances of which will
contain the non-inductive components from data of type τ .

2. Derive a partitioning function, partitionτ , which will allow data of type τ to
be converted into a well-partitioned join-list containing data of type τ ′.

AutoPar: Automatic Parallelization of Functional Programs 15

3. Derive a rebuilding function, rebuildτ , which will convert a join-list contain-
ing data of type τ ′ into data of type τ .

4. Distill a program equivalent to the given program which is defined on a
well-partitioned join-list.

Using these four steps, we can automatically convert a given program into
an equivalent program defined on well-partitioned data. Section 4.1 presents
an overview of the distillation program transformation technique. Section 4.2
describes how we combine distillation and the automatic partitioning technique
in order to convert a program into an equivalent one defined on well-partitioned
data.

x :: τ x′ :: JList τ ′

partitionτ

rebuildτ

Fig. 3: Data Partitioning Functions

4.1 Distillation

Distillation [14, 16–18] is a powerful fold/unfold based program transformation
technique which eliminates intermediate data-structures from higher-order func-
tional programs. It is capable of obtaining a super-linear increase in efficiency
and is significantly more powerful than the positive-supercompilation program
transformation technique [15, 32, 33] which is only capable of obtaining a linear
increase in efficiency [34].

Distillation essentially performs normal-order reduction according to the re-
duction rules defined in [14]. Folding is performed on encountering a renaming of
a previously encountered expression, and generalization is performed to ensure
the termination of the transformation process. The expressions compared prior
to folding or generalization within the distillation transformation are the results
of symbolic evaluation of the expressions, whereas in positive-supercompilation,
the syntax of the expressions are compared. Generalization is performed upon
encountering an expression which contains an embedding of a previously encoun-
tered expression. This is performed according to the homeomorphic embedding
relation, which is used to detect divergence within term rewriting systems [8].

We do not give a full description of the distillation algorithm here; details
can be found in [14]. The distillation algorithm is not required to understand

16 Michael Dever, G. W. Hamilton

the remainder of this paper, it is sufficient to know that distillation can be used
to eliminate the use of intermediate data structures in expressions.

4.2 Distilling Programs on Well-Partitioned Data

Given a sequential program, f , defined using an instantiated data-type, τ , we
first define a conversion function which will convert data of type τ into a well
partitioned join-list, partitionτ , and one which will convert a join-list into data
of type τ , rebuildτ , as depicted in Figure 3.

By applying distillation, denoted D, to the composition of f and rebuildτ ,
DJf ◦ rebuildτ K, we can automatically generate a function, fwp, which is equiv-
alent to f but is defined on a well-partitioned join-list containing data of type
τ ′. A high level overview of this process is presented in Figure 4.

x′ :: JList τ ′ x :: τ Result
rebuildτ f

x′ :: JList τ ′ Result
fwp

Distillation

Fig. 4: Distillation of Programs on Well-Partitioned Data

Obviously, fwp is defined on a well-partitioned join-list, whereas f is de-
fined on data of type τ . We can generate the correct input for fwp by applying
partitionτ to the input of f and using the result of this as the input to fwp.

5 Automatically Parallelizing Functional Programs

Given a program, once we have distilled an equivalent program defined on a
well-partitioned join-list, this can be transformed into an equivalent explicitly
parallelized program defined on a well-partitioned join-list. Our novel paral-
lelization technique consists of two steps:

1. Ensure that expressions which are parallelizable are independent.

AutoPar: Automatic Parallelization of Functional Programs 17

2. Explicitly parallelize the resulting parallelizable expressions.

Using these two steps, we can automatically convert a given program into
an equivalent explicitly parallelized program that operates on well-partitioned
data. Section 5.1 describes the process by which we ensure that expressions which
are parallelizable are independent and Section 5.2 describes the process which
explictly parallelizes a program defined on well-partitioned data.

5.1 Extracting Independent Parallelizable Expressions

Prior to explicitly parallelizing the output of distillation we must first make sure
that any expressions that will be parallelized are independent of each other.
Given an expression, e, we define its parallelizable expressions as the set of
unique maximal sub-expressions of e which operate on a single join-list. That
is, each parallelizable expression of e must be the largest sub-expression of e
which operates on a join-list and is not a variable. Once we have identified all
the parallelizable expressions within e, these are extracted into a let statement
which is equivalent to e.

As an example, consider the function f , as defined below:

f = λx. λn.case x of
Join l r → f r (f l n)

Within f , both the join-lists l and r are evaluated, therefore we identify the
parallelizable expressions in which they are evaluated, f l n and f r respectively.
These are then extracted into a let statement equivalent to f r (f l n) as follows:

f = λx. λn.case x of
Join l r → let x1 = f l n

x2 = f r
in x2 x1

As the output of distillation contains no let statements, this process allows
us to explicitly parallelize expressions that operate on well-partitioned join-lists,
as any extracted expression within a let statement must be a parallelizable
expression.

5.2 Explicit Parallelization of Functional Programs

Given a distilled program which operates on a well-partitioned join-list, fwp,
which has had its parallelizable expressions made independent, the final step
of the automatic parallelization technique is to apply another transformation,
Tp, to fwp in order to explicitly parallelize expressions which operate on well-
partitioned join-lists. The result of this transformation is a function, fpar, which
is equivalent to f but is defined on a well-partitioned join-list and has been
explicitly parallelized. A high-level overview of this process is shown in Figure 5.
The transformation rules for Tp are defined as shown in Fig. 6.

18 Michael Dever, G. W. Hamilton

x′ :: JList τ ′ Result
fwp

x′ :: JList τ ′ Result
fpar

Parallelization

Fig. 5: Parallelization of Program defined on Well-Partitioned Data

The majority of the transformation rules should be self explanatory: vari-
ables, abstraction variables, constructor names are left unmodified. The bodies
of constructors, applications, abstractions and function definitions are trans-
formed according to the parallelization rules, as are the selectors and branch
expressions of case statements.

The most interesting of the presented transformation rules is the one that
deals with let statements. As each extracted expression within a let statement
is a parallelizable expression its evaluation should be sparked in parallel. How-
ever, as these may contain further parallelizable expressions, we first apply the
parallelization algorithm to the extracted expressions, as well as to the body of
the let statement. Finally, we spark the evaluation of all but one of the paral-
lelizable expressions in parallel with the full evaluation of the last parallelizable
expression, xn. This means that the evaluation of the parallelized version of e0
will not begin until xn has been fully evaluated, at which point, hopefully, the
remaining parallelized expressions will have been evaluated in parallel.

As an example, consider again the definition of f shown previously, which
has had its parallelized expressions extracted. Application of Tp to f results in
the definition of fpar shown below:

fpar = λx. λn.case x of
Join l r → let x1 = fpar l n

x2 = fpar r
in x1

′par′ x2
′pseq′ x2 x1

AutoPar: Automatic Parallelization of Functional Programs 19

TpJxK = x
TpJc e1 . . . enK = c TpJe1K . . . TpJenK
TpJfK = f
TpJλx.eK = λx.TpJeK
TpJe0 e1K = TpJe0K TpJe1K
TpJcase x of p1 → e1 | . . . | pk → ekK= case x of p1 → TpJe1K | . . . | pk → TpJekK
TpJe0 where f1 = e1 . . . fn = enK = TpJe0K where f1 = TpJe1K . . . fn = TpJenK
TpJlet x1 = e1 . . . xn = enin e0K

=

let x1 = TpJe1K

...
xn = TpJenK

in x1
′par′ . . . xn−1

′par′ xn
′pseq′ TpJe0K

Fig. 6: Transformation Rules for Parallelization

6 Automatic Parallelization of a Sample Program

This section presents an example of the application of the automatic paralleliza-
tion technique to the program sumList, which calculates the sum of a cons-list
of numbers, as shown below:

sumList = λxs.case xs of
Nil → 0
Cons x xs→ x+ sumList xs

The first step in applying the automatic parallelization technique to sumList
is to derive the functions for converting data of type List Int to and from
a well-partitioned join-list containing data of type List′ using our automatic
partitioning technique, the results of which are shown below:

data List′ ::= Nil′

| Cons′ Int

partition(List Int) = partition ◦ flatten(List Int)

flatten(List Int) = λxs.case xs of
Nil → [Nil′]
Cons x1 x2 → [Cons′ x1] ++ flatten(List Int) x2

rebuild(List Int) = fst ◦ unflatten(List Int) ◦ rebuild

unflatten(List Int) = λxs.case xs of
(x : xs)→ case x of

Nil′ → (Nil, xs)
Cons′ x1 → case unflatten(List Int) xs of

(x2, xs2)→ (Cons x1 x2, xs2)

20 Michael Dever, G. W. Hamilton

After generating these conversion functions, we compose sumList with
rebuild(List Int) and distill this composition, DJsumList ◦ rebuild(List Int)K, to
generate an efficient sequential program equivalent to sumList defined on a
partitioned join-list. The resulting function, sumListwp is shown below:

sumListwp = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → sumList′wp l (sumListwp r)

sumList′wp = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → sumList′wp l (sumList
′
wp r n)

After defining sumListwp, we extract its parallelizable expressions, resulting
in the definition of sumListwp, shown below:

sumListwp = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → let l′ = sumList′wp l

r′ = sumListwp r
in l′ r′

sumList′wp = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → let l′ = sumList′wp l
r′ = sumList′wp r n

in l′ r′

Finally, after defining sumListwp, and extracting its parallelizable expres-
sions, we apply Tp to sumListwp in order to explicitly parallelize its operations
on well-partitioned join-lists. The resulting definition of sumListpar is shown
below:

AutoPar: Automatic Parallelization of Functional Programs 21

sumListpar = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → let l′ = sumList′par l

r′ = sumListpar r
in l′ ′par′ r′ ′pseq′ l′ r′

sumList′par = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → let l′ = sumList′par l
r′ = sumList′par r n

in l′ ′par′ r′ ′pseq′ l′ r′

By making distillation aware of the definition of the + operator, it can derive
the necessary associativity that allows for each child of a Join to be evaluated in
parallel. It is worth noting that in the case of the above program, when evaluating
the left child of a Join we create a partial application which can be evaluated
in parallel with the evaluation of the right child. This partial application is
equivalent to (λr.l + r), where r is the result of the evaluation of the right
operand.

As both children are roughly equal in size, each parallel process created will
have a roughly equal amount of work to do. In contrast, with respect to the orig-
inal sumList defined on cons-lists, if the processing of both x and sumList xs
are performed in parallel, one process will have one element of the list to eval-
uate, while the other will have the remainder of the list to evaluate, which is
undesirable.

7 Related Work

There are many existing works that aim to automate the parallelization process,
however many of these works simply assume or require that they are provided
with data for which there is a straight-forward conversion to a well-partitioned
form. For example, list-homomorphisms [2–4, 10, 26] and their derivative works
[5, 12, 13, 19–22, 30, 31] require that they are supplied with data in the form
of a cons-list for which there is a simple conversion to a well-partitioned join-
list. These techniques also require the specification of associative/distributive
operators to be used as part of the parallelization process, which places more
work in the hands of the developer.

Chin et al.’s [6, 7, 35] work on parallelization via context-preservation also
makes use of join-lists as part of its parallelization process. Given a program, this
technique derives two programs in pre-parallel form, which are then generalized.
The resulting generalized function may contain undefined functions which can be
defined using an inductive derivation. While such an approach is indeed powerful
and does allow such complex functions as those with accumulating parameters,

22 Michael Dever, G. W. Hamilton

nested recursion and conditional statements, it also has its drawbacks. One such
drawback is that it requires that associativity and distributivity be specified for
primitive functions by the developer. The technique is therefore semi-automatic
and a fully automatic technique would be more desirable. While [35] presents
an informal overview of the technique, a more concrete version was specified
by Chin. et. al. in [6, 7]. However, these more formal versions are still only
semi-automatic and are defined for a first-order language and require that the
associativity/distributivity of operators be specified. This technique is also only
applicable to list-paramorphisms [27] and while this encompasses a large number
of function definitions, it is unrealistic to expect developers to define functions
in this form. Further restrictions also exist in the transformation technique as
the context-preservation property must hold in order to ensure the function can
be parallelized.

While these techniques are certainly powerful, requiring that programs are
only developed in terms of cons-lists is an unrealistic burden to place upon the
developer, as is requiring that the associativity/distributivity of operators be
specified. An important limitation to these techniques is that they are only ap-
plicable to lists, excluding the large class of programs that are defined on trees.
One approach to parallelizing trees is that of Morihata et. al.’s [28] redefinition
of the third homomorphism theorem [11] which is generalized to apply to trees.
This approach makes use of zippers [23] to model the path from the root of a
tree to an arbitrary leaf. While this approach presents an interesting approach
to partitioning the data contained within a binary tree, the partitioning tech-
nique is quite complicated and relies upon zippers. It also presents no concrete
methodology for generating zippers from binary-trees and assumes that the de-
veloper has provided such a function. It also requires that the user specify two
functions in upward and downward form [28] which is quite restrictive so it is
not realistic to expect a developer to define their programs in such a manner.

8 Conclusion

In conclusion, this paper has presented a novel, fully automatic parallelization
technique for functional programs defined on any data-type. By defining a tech-
nique by which a developer can automatically parallelize programs, the difficul-
ties associated with the parallelization process can be removed from the devel-
oper, who can continue developing software within the ‘comfortable’ sequential
side of development and have equivalent parallel software derived automatically
as needed.

Where existing automated parallelization techniques are restrictive with re-
spect to the form of their input programs and the types they are defined on, the
presented parallelization technique holds no such restrictions due to its use of
our automatic data partitioning technique which converts data of any type into
a well-partitioned form. To the best of the authors knowledge this is the first
automated parallelization technique that is applicable to programs defined on
any data-type.

AutoPar: Automatic Parallelization of Functional Programs 23

One potential problem with our automatic parallelization technique is that it
may get down to such a fine level of granularity of divide-and-conquer parallelism,
that it is merely sparking a large number of trivial processes in parallel. This is
obviously undesirable due to being wasteful of resources and potentially having
a negative impact on efficiency due to the overheads associated with sparking
parallel processes.

A solution to this problem is to control the level of granularity via the use of
thresholding to govern the sparking of new parallel processes. Such an approach
will also give the developer a measure of control over the parallelism obtained in
the output program. Thresholding can be used to prevent the parallelization of
join-lists whose size falls below a certain point. Research is ongoing to determine
an optimal thresholding strategy for our automatically parallelized programs.

While our research is focused on divide-and-conquer task parallelization, it
is also worth noting the potential for the system to be used as part of a data-
parallel approach. If partition(T T1...Tg) is redefined to generate a flattened list
representation of the input data-structure, this could then be partitioned into
chunks and distributed across a data-parallel architecture, such as a GPU. This
would require a redefinition of Tp in order to support such an approach, which
would implement the data-parallelism in the resulting program ensuring that the
same function is applied to each chunk of data in parallel. Research is currently
underway to extend the presented work to support automatic partitioning to
enable GPU parallelization [24].

Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant
10/CE2/I303_1 to Lero - the Irish Software Engineering Research Centre.

References

1. L. Augustsson. Compiling Pattern Matching. Functional Programming Languages
and Computer Architecture, 1985.

2. R. Backhouse. An Exploration of the Bird-Meertens Formalism. Technical report,
In STOP Summer School on Constructive Algorithmics, Abeland, 1989.

3. R. Bird. Constructive Functional Programming. STOP Summer School on Con-
structive Algorithmics, 1989.

4. R. S. Bird. An Introduction to the Theory of Lists. In Proceedings of the NATO
Advanced Study Institute on Logic of programming and calculi of discrete design,
pages 5–42, New York, NY, USA, 1987. Springer-Verlag New York, Inc.

5. G. E. Blelloch. Scans as Primitive Operations. IEEE Transactions on Computers,
38(11):1526–1538, 1989.

6. W.-N. Chin, S.-C. Khoo, Z. Hu, and M. Takeichi. Deriving Parallel Codes via
Invariants. In J. Palsberg, editor, Static Analysis, volume 1824 of Lecture Notes in
Computer Science, pages 75–94. Springer Berlin Heidelberg, 2000.

7. W. N. Chin, A. Takano, Z. Hu, W. ngan Chin, A. Takano, and Z. Hu. Parallelization
via Context Preservation. In In IEEE Intl Conference on Computer Languages,
pages 153–162. IEEE CS Press, 1998.

24 Michael Dever, G. W. Hamilton

8. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 243–320.
1990.

9. M. Dever and G. W. Hamilton. Automatically Partitioning Data to Facilitate
the Parallelization of Functional Programs. Proceedings of the Eight International
Andrei Ershov Memorial Conference, July 2014.

10. M. Fokkinga. A gentle introduction to category theory — the calculational ap-
proach. In Lecture Notes of the STOP 1992 Summerschool on Constructive Algo-
rithmics, pages 1–72. University of Utrecht, September 1992.

11. J. Gibbons. The Third Homomorphism Theorem. Journal of Functional Program-
ming, 6(4):657–665, 1996. Earlier version appeared in C.B. Jay, editor, Computing:
The Australian Theory Seminar, Sydney, December 1994, p. 62–69.

12. S. Gorlatch. Systematic Efficient Parallelization of Scan and Other List Homomor-
phisms. In In Annual European Conference on Parallel Processing, LNCS 1124,
pages 401–408. Springer-Verlag, 1996.

13. S. Gorlatch. Systematic Extraction and Implementation of Divide-and-Conquer
Parallelism. In Programming languages: Implementation, Logics and Programs,
Lecture Notes in Computer Science 1140, pages 274–288. Springer-Verlag, 1996.

14. G. Hamilton and N. Jones. Distillation and Labelled Transition Systems. Pro-
ceedings of the ACM Workshop on Partial Evaluation and Program Manipulation,
pages 15–24, January 2012.

15. G. Hamilton and N. Jones. Proving the Correctness of Unfold/Fold Program Trans-
formations using Bisimulation. Lecture Notes in Computer Science, 7162:153–169,
2012.

16. G. W. Hamilton. Distillation: Extracting the Essence of Programs. Proceedings of
the ACM Workshop on Partial Evaluation and Program Manipulation, 2007.

17. G. W. Hamilton. Extracting the Essence of Distillation. Proceedings of the Sev-
enth International Andrei Ershov Memorial Conference: Perspectives of System
Informatics, 2009.

18. G. W. Hamilton and G. Mendel-Gleason. A Graph-Based Definition of Distillation.
Proceedings of the Second International Workshop on Metacomputation in Russia,
2010.

19. Z. Hu, H. Iwasaki, and M. Takechi. Formal Derivation of Efficient Parallel Pro-
grams by Construction of List Homomorphisms. ACM Trans. Program. Lang.
Syst., 19(3):444–461, May 1997.

20. Z. Hu, M. Takeichi, and W.-N. Chin. Parallelization in Calculational Forms. In
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’98, pages 316–328, New York, NY, USA, 1998. ACM.

21. Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating Efficient Parallel
Programs. In In 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 85–94, 1999.

22. Z. Hu, T. Yokoyama, and M. Takeichi. Program Optimizations and Transforma-
tions in Calculation Form. In Proceedings of the 2005 international conference on
Generative and Transformational Techniques in Software Engineering, GTTSE’05,
pages 144–168, Berlin, Heidelberg, 2006. Springer-Verlag.

23. G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, Sept. 1997.
24. V. Kannan and G. W. Hamilton. Distillation to Extract Data Parallel Compu-

tations. Proceedings of the Fourth International Valentin Turchin Workshop on
Metacomputation, July 2014.

AutoPar: Automatic Parallelization of Functional Programs 25

25. H.-W. Loidl, P. W. Trinder, K. Hammond, A. Al Zain, and C. A. Baker-Finch.
Semi-Explicit Parallel Programming in a Purely Functional Style: GpH. In
M. Alexander and B. Gardner, editors, Process Algebra for Parallel and Dis-
tributed Processing: Algebraic Languages in Specification-Based Software Devel-
opment, pages 47–76. Chapman and Hall, Dec. 2008.

26. G. Malcolm. Homomorphisms and Promotability. In Proceedings of the Interna-
tional Conference on Mathematics of Program Construction, 375th Anniversary of
the Groningen University, pages 335–347, London, UK, 1989. Springer-Verlag.

27. L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424, 1992.
28. A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. The Third Homomorphism

Theorem on Trees: Downward & Upward lead to Divide-and-Conquer. In Pro-
ceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’09, pages 177–185, New York, NY, USA, 2009.
ACM.

29. D. Skillicorn. Foundations of Parallel Programming. Cambridge International
Series on Parallel Computation. Cambridge University Press, 2005.

30. D. B. Skillicorn. Architecture-Independent Parallel Computation. Computer,
23:38–50, December 1990.

31. D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model. In Software
for Parallel Computation, volume 106 of NATO ASI Series F, pages 120–133.
Springer-Verlag, 1993.

32. M. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercom-
pilation. International Logic Programming Symposium, pages 465–479, 1995.

33. M. Sørensen, R. Glück, and N. Jones. A Positive Supercompiler. Journal of
Functional Programming, 1(1), January 1993.

34. M. H. Sørensen. Turchin’s Supercompiler Revisited - An Operational Theory of
Positive Information Propagation, 1996.

35. Y. M. Teo, W.-N. Chin, and S. H. Tan. Deriving Efficient Parallel Programs for
Complex Recurrences. In Proceedings of the second international symposium on
Parallel symbolic computation, PASCO ’97, pages 101–110, New York, NY, USA,
1997. ACM.

36. P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm
+ Strategy = Parallelism. Journal of Functional Programming, 8(1):23–60, Jan.
1998.

37. P. Wadler. Efficient Compilation of Pattern Matching. In S. P. Jones, editor, The
Implementation of Functional Programming Languages., pages 78–103. Prentice-
Hall, 1987.

38. P. Wadler. Deforestation: Transforming Programs to Eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

	Introduction
	Language
	Glasgow Parallel Haskell
	Transforming Data to Well-Partitioned Join-Lists
	Distillation
	Distilling Programs on Well-Partitioned Data

	Automatically Parallelizing Functional Programs
	Extracting Independent Parallelizable Expressions
	Explicit Parallelization of Functional Programs

	Automatic Parallelization of a Sample Program
	Related Work
	Conclusion

