
Inductive Prover Based on Equality Saturation
for a Lazy Functional Language⋆

(Extended Version)

Sergei A. Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
sergei.grechanik@gmail.com

Abstract. The present paper shows how the idea of equality satura-
tion can be used to build an inductive prover for a non-total first-order
lazy functional language. We adapt equality saturation approach to a
functional language by using transformations borrowed from supercom-
pilation. A special transformation called merging by bisimilarity is used
to perform proof by induction of equivalence between nodes of the E-
graph. Equalities proved this way are just added to the E-graph. We
also experimentally compare our prover with HOSC, HipSpec and Zeno.

1 Introduction

Equality saturation [23] is a method of program transformation that uses a
compact representation of multiple versions of the program being transformed.
This representation is based on E-graphs (graphs whose nodes are joined into
equivalence classes [7, 18]) and allows us to represent a set of equivalent pro-
grams, consuming exponentially less memory than representing it as a plain set.
Equality saturation consists in enlarging this set of programs by applying cer-
tain axioms to the E-graph until there’s no axiom to apply or the limit of axiom
applications is reached. The axioms are applied non-destructively, i.e. they only
add information to the E-graph (by adding nodes, edges and equivalences).

Equality saturation has several applications. It can be used for program
optimization – in this case after the process of equality saturation is finished, a
single program should be extracted from the E-graph. It can also be used for
proving program equivalence (e.g. for translation validation [22]) – in this case
program extraction is not needed.

In the original papers equality saturation is applied to imperative languages,
namely Java bytecode and LLVM (although the E-graph-based intermediate rep-
resentation used there, called E-PEG, is essentially functional). In this paper we
describe how equality saturation can be applied to the task of proving equivalence

⋆ Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



Inductive Prover Based on Equality Saturation 27

of functions written in a lazy functional language, which is important for proving
algebraic properties like monad laws or some laws concerning natural numbers
and lists. We do this mainly by borrowing transformations from supercompila-
tion [21, 24]. Since many properties require proof by induction, we introduce a
special transformation called merging by bisimilarity which essentially proves by
induction that two terms are equivalent. This transformation may be applied
repeatedly, which gives an effect of discovering and proving lemmas needed for
the main goal.

Unlike tools such as HipSpec [5] and Zeno [20], we don’t instantiate the
induction scheme, but instead check the correctness of the proof graph similarly
to Agda and Foetus [3, 4]. We also fully support infinite data structures and
partial values, and we don’t assume totality. As we’ll show, proving properties
that hold only in total setting is still possible with our tool by enabling some
additional transformations, but it’s not very efficient.

The main contributions of this paper are: 1) we apply the equality saturation
approach to a lazy functional language; 2) we propose to merge classes of the
E-graph even if they represent functions equal only up to argument permutation;
3) we articulate the merging by bisimilarity transformation.

The paper is organized as follows. In Section 2 we briefly describe equality
saturation and how functional programs and sets of functional programs can be
represented by E-graphs. Then in Section 3 we discuss basic transformations
which we apply to the E-graph. Section 4 deals with the merging by bisimilarity
transformation. Section 5 discusses the order of transformation application. In
Section 6 we consider a simple example. In Section 7 we present experimental
evaluation of our prover. Section 8 discusses related work and Section 9 concludes
the paper.

The source code of our experimental prover can be found on GitHub [1].

2 Programs and E-graphs

An E-graph is a graph enriched with information about equivalence of its nodes
by means of splitting them into equivalence classes. In our case, an E-graph
essentially represents a set of (possibly recursive) terms and a set of equalities
on them, closed under reflexivity, transitivity and symmetry. If we use the
congruence closure algorithm [18], then the set of equalities will also be closed
under congruence. The E-graph representation is very efficient and often used
for solving the problem of term equivalence.

If we have some axioms about our terms, we can also apply them to the
E-graph, thus deducing new equalities from the ones already present in E-graph
(which in its turn may lead to more axiom application opportunities). This is
what equality saturation basically is. So, the process of solving the problem of
function/program equivalence using equality saturation is as follows:

1. Convert both function definitions to E-graphs and put both of them into a
single E-graph.



28 Sergei A. Grechanik

not b =
case b of
T → F
F → T

even n =
case n of
Z → T
S m → odd m

odd n =
not (even n)

(a)

odd 𝑛

subst(𝑏)

not 𝑏

case of (T, F)

F𝑥

even 𝑛

case of (Z, S 𝑚)

T

{𝑥 ↦→ 𝑛}

{𝑥
↦→
𝑏}

{𝑛 ↦→ 𝑚}

(b)

Fig. 1: A program and its graph representation

2. Transform the E-graph using some axioms (transformations) until the target
terms are in the same equivalence class or no more axioms are applicable.
This process is called saturation.

In pure equality saturation approach axioms are applied non-destructively and
result only in adding new nodes and edges, and merging of equivalence classes,
but in our prover we apply some axioms destructively, removing some nodes
and edges. This makes the result of the saturation dependent on the order of
axiom application, so we restrict it to breadth-first order (see Section 5 for more
details). This deviation is essential for performance reasons.

In this paper we will use a lazy first-order untyped subset of Haskell (in our
implementation higher-order functions are dealt with by defunctionalization).
To illustrate how programs are mapped into graphs, let’s consider the program
in Figure 1a. This program can be naturally represented as a graph, as shown in
Figure 1b. Each node represents a basic language construct (pattern matching,
constructor, variable, or explicit substitution – we’ll explain them in Section 2.1).
If a node corresponds to some named function, its name is written in the top
part of it. Some nodes are introduced to split complex expressions into basic
constructs and don’t correspond to any named functions. Recursion is simply
represented by cycles. Some nodes are shared (in this example these are the
variable 𝑥 and the constructor T). Sharing is very important since it is one of
the things that enable compactness of the representation.

Some of the edges are labeled with renamings. Actually, all edges are labeled
with renamings, but identity renamings are not drawn. These renamings are
very important – without them we would need a separate node for each variable,
and we couldn’t merge nodes representing the same function modulo renaming,
which would increase space consumption (such functions often appear during
transformation). Merging up to renaming will be discussed in Section 2.2.



Inductive Prover Based on Equality Saturation 29

not 𝑏

case of (T, F)

F𝑥 T

even 𝑛

case of (Z, S 𝑚)

odd 𝑛

case of (Z, S 𝑚)

odd 𝑛

subst(𝑏)

even 𝑛

subst(𝑏)

{𝑥
↦→

𝑛}

{
𝑥
↦→

𝑛} {𝑥
↦→

𝑏}

{𝑛 ↦→ 𝑚}

{𝑛 ↦→ 𝑚}

Fig. 2: E-graph representing functions even and odd

Note also that we use two methods of representing function calls. If all
the arguments are distinct variables, then we can simply use a renaming (the
function odd is called this way). If the arguments are more complex, then we use
explicit substitution [2], which is very similar to function call but has more fine-
grained reduction rules. We can use explicit substitutions even if the arguments
are distinct variables, but it’s more expensive than using renamings (and actually
we have an axiom to transform such explicit substitutions to renamings). Note
that we require an explicit substitution to bind all variables of the expression
being substituted.

The same way graphs naturally correspond to programs, E-graphs naturally
correspond to programs with multiple function definitions. Consider the follow-
ing “nondeterministic” program:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

odd n = not (even n)
even n = not (odd n)

This program contains multiple definitions of the functions even and odd, but all
the definitions are actually equivalent. This program can also be represented as
a graph, but there will be multiple nodes corresponding to functions even and
odd. If we add the information that nodes corresponding to the same function
are in the same equivalence class, we get an E-graph. The E-graph corresponding
to the above program is shown in Figure 2. Nodes of equivalent functions are
connected with dashed lines, meaning that these nodes are in the same class of



30 Sergei A. Grechanik

equivalence. As can be seen, the drawing is messy and it’s hard to understand
what’s going on there, so we’ll mostly use textual form to describe E-graphs.

E-graphs are also useful for representing compactly sets of equivalent pro-
grams. Indeed, we can extract individual programs from an E-graph or a non-
deterministic program by choosing a single node for each equivalence class, or
in other words, a single definition for each function. However, we cannot pick
the definitions arbitrarily. For example, the following program isn’t equivalent
to the one above:

not b = case b of { T → F; F → T }

odd n = not (even n)
even n = not (odd n)

This problem should be taken into account not only when performing program
extraction, but also during certain complex transformations like merging by
bisimilarity which we will discuss in Section 4.

2.1 Node labels

In this section we’ll discuss how node labels correspond to language constructs.
First of all, each node of an E-graph is a member of some equivalence class.

We will use symbols 𝑓, 𝑔, ℎ, . . . to denote nodes as well as corresponding func-
tions. Each node has a label 𝐿(𝑓) and a set of input variables 𝑉 (𝑓) (in the
implementation variables are numbered, but in this paper we treat them as
named). 𝑉 (𝑓) may decrease with graph evolution, and it should be kept up to
date because we need 𝑉 (𝑓) to perform some transformations (keeping it up to
date is beyond the scope of this paper). Each edge of an E-graph is labeled with
an injective renaming, its domain being the set of input variables of the edge’s
destination node. We will use the notation 𝑓 = 𝐿 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛 to describe
a node 𝑓 with a label 𝐿 and outgoing edges with renamings 𝜃𝑖 and destinations
𝑔𝑖. We will write 𝑓 ∼= 𝑔 to denote that 𝑓 and 𝑔 are from the same equivalence
class.

There are only four kinds of node labels. We give a brief description for each
of them and some code examples:

– 𝑓 = 𝑥. (Variable / identity function). We use the convention that the
identity function always takes the variable 𝑥, and if we need some other
variable, we adjust it with a renaming. Code example: f x = x

– 𝑓 = subst(𝑥1, . . . , 𝑥𝑛) → 𝜉ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Explicit substitution / function
call / let expression). An explicit substitution substitutes values 𝜃𝑖𝑔𝑖 for the
variables 𝑥𝑖 in 𝜉ℎ. We require it to bind all the variables of 𝜉ℎ. Explicit
substitution nodes usually correspond to function calls:

f x y = h (g1 x) (g2 y) (g3 x y)

They may also correspond to non-recursive let expressions, or lambda ab-
stractions immediately applied to the required number of arguments:



Inductive Prover Based on Equality Saturation 31

f x y = let { u = g1 x; v = g2 y; w = g3 x y } in h u v w
= (𝜆 u v w . h u v w) (g1 x) (g2 y) (g3 x y)

But to describe E-graph transformations we will use the following non-
standard (but hopefully more readable) postfix notation:

f x y = h u v w { u = g1 x, v = g2 y, w = g3 x y }

– 𝑓 = 𝐶 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Constructor). Code example:

f x y = C (g1 x) (g2 y) (g3 x y)

– 𝑓 = caseof(𝐶1𝑥1, . . . , 𝐶𝑛𝑥𝑛) → 𝜉ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Pattern matching). This
label is parametrized with a list of patterns, each pattern is a constructor
name and a list of variables. The corresponding case bodies (𝜃𝑖𝑔𝑖) don’t have
to use all the variables from the pattern. 𝜉ℎ represents the expression being
scrutinized. Code example:

f x y = case h x of
S n → g1 y n
Z → g2 x

We will also need an operation of adjusting a node with a renaming. Consider
a node 𝑓 = 𝐿 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛 and a renaming 𝜉. Suppose, we want to create a
function 𝑓 ′ = 𝜉𝑓 (𝑓 ′ is 𝑓 with parameters renamed). We can do this by adjusting
outgoing edges of 𝑓 with 𝜉 (unless 𝑓 = 𝑥 in which case it doesn’t have outgoing
edges). We will use the following notation for this operation:

𝑓 ′ = 𝜉(𝐿 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛)

The operation is defined as follows:

𝜉(𝐶 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) = 𝐶 → (𝜉 ∘ 𝜃1)𝑔1, . . . , (𝜉 ∘ 𝜃𝑛)𝑔𝑛

𝜉(subst(. . .) → 𝜁ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) =

subst(. . .) → 𝜁ℎ, (𝜉 ∘ 𝜃1)𝑔1, . . . , (𝜉 ∘ 𝜃𝑛)𝑔𝑛

𝜉(caseof(. . .) → 𝜁ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) =

caseof(. . .) → (𝜉 ∘ 𝜁)ℎ, (𝜉′1 ∘ 𝜃1)𝑔1, . . . , (𝜉
′
𝑛 ∘ 𝜃𝑛)𝑔𝑛

In the last case each 𝜉′𝑖 maps the variables bound by the 𝑖th pattern to themselves
and works as 𝜉 on all the other variables.

2.2 Merging

One of the basic operations of the E-graph is merging of equivalence classes.
Usually it is done after applying axioms that result in adding new equalities
between nodes. In the case of simple equalities like 𝑓 = 𝑔 we should simply merge
the corresponding equivalence classes. But we also want to merge functions
which are equal only up to some renaming, so should take into account equalities



32 Sergei A. Grechanik

of the form 𝑓 = 𝜃𝑔 where 𝜃 is some non-identity renaming. In this case we should
first adjust renamings on edges so that the equation becomes of the form 𝑓 = 𝑔
and then proceed as usual.

Consider the equation 𝑓 = 𝜃𝑔. Let’s assume that 𝑔 is not a variable node
(𝑥) and it’s not in the same equivalence class with a variable node (otherwise we
can rewrite the equation as 𝑔 = 𝜃−1𝑓 , and if they both were equal to a variable
node, then our E-graph would be self-contradictory). Now for each node ℎ in
the same equivalence class with 𝑔 (including 𝑔) we should perform the following:

1. Adjust the outgoing edges of ℎ with 𝜃 using previously described node ad-
justment operation.

2. For each edge incoming into ℎ replace its renaming, say, 𝜉, with a renaming
𝜉 ∘ 𝜃−1

After the adjustment the equation becomes 𝑓 = 𝑔 and we can merge the equiv-
alence classes.

Note that this procedure works if 𝑓 and 𝑔 aren’t in the same equivalence
classes. If they are, then the equation looks like 𝑓 = 𝜃𝑓 and should be modelled
with an explicit substitution.

3 Axioms

3.1 Congruence

The most common cause of equivalence class merging is equivalence by congru-
ence, that is if we know that 𝑎 = 𝑓(𝑏), 𝑐 = 𝑓(𝑑) and 𝑏 = 𝑑, then we can infer
that 𝑎 = 𝑐. Note that usually this kind of merging is not explicitly formulated as
an axiom, but we prefer to do it explicitly for uniformity. Also, in our case the
axiom should take into account that we want to detect equivalences up to some
renaming. Here is the axiom written as an inference rule, we will later refer to
it as (cong):

𝑓 = 𝐿 → 𝜃1ℎ1, . . . , 𝜃𝑛ℎ𝑛 ∃𝜉 : 𝑔 = 𝜉(𝐿 → 𝜃1𝑘1, . . . , 𝜃𝑛𝑘𝑛) ∀𝑖 ℎ𝑖
∼= 𝑘𝑖

𝑔 = 𝜉𝑓

It says that if we have a node 𝑓 and a node 𝑔 that is equivalent to 𝑓 adjusted
with some renaming 𝜉, then we can add the equality 𝑔 = 𝜉𝑓 to the E-graph. This
axiom is advantageous to apply as early as possible since it results in merging of
equivalence classes, which reduces duplication and gives more opportunities for
applying axioms. Also note that to make the search for the appropriate 𝜉 faster,
it is beneficial to represent nodes in normal form:

𝑓 = 𝜁(𝐿 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛)

Where 𝜃𝑖 are as close to identity renamings as possible, so to find 𝜉 we should
just compare the 𝜁’s.



Inductive Prover Based on Equality Saturation 33

3.2 Injectivity

This axiom may be seen as something like “inverse congruence”. If we know
that 𝑎 = 𝑓(𝑏), 𝑐 = 𝑓(𝑑) and 𝑎 = 𝑐 and 𝑓 is injective, then 𝑏 = 𝑑. Of course, we
could achieve the same effect by adding the equalities 𝑏 = 𝑓−1(𝑎) and 𝑑 = 𝑓−1(𝑐)
to the E-graph and then using congruence, but we prefer a separate axiom for
performance reasons. We will call it (inj):

𝑓 = 𝐿 → 𝜉(𝜃1ℎ1, . . . 𝜃𝑛ℎ𝑛) 𝑔 = 𝐿 → 𝜉(𝜁1𝑘1, . . . 𝜁𝑛𝑘𝑛) 𝑓 ∼= 𝑔 𝐿 is inj

∀𝑖 . ℎ𝑖 = 𝜃−1
𝑖 𝜁𝑖𝑘𝑖

“𝐿 is inj” means that 𝐿 is either a constructor, or a case-of that scrutinizes a
variable (i.e. 𝜃1 = 𝜁1 and ℎ1 = 𝑘1 = 𝑥) such that none of the 𝜃2ℎ2, . . . , 𝜃𝑛ℎ𝑛,
𝜁2𝑘2, . . . , 𝜁𝑛𝑘𝑛 uses this variable (in other words, positive information is propa-
gated). This axiom is also advantageous to apply as early as possible.

3.3 Semantics of explicit substitutions

In this and the next sections we will write axioms in a less strict but more
human-readable form. A rewriting rule 𝐸1 ↦→ 𝐸2 means that if we have a node
𝑓1 representing the expression 𝐸1, then we can add an equality 𝑓1 = 𝑓2 to the
E-graph where 𝑓2 is the node representing 𝐸2 (which should also be added to
the E-graph unless it’s already there). We use the compact postfix notation
to express explicit substitutions. We use letters 𝑒, 𝑓, 𝑔, ℎ, . . . to represent nodes
whose structure doesn’t matter. We sometimes write them applied to variables
they use (𝑓 𝑥 𝑦), but if variables don’t really matter, we omit them. Note that
the presented rules can be generalized to the case when pattern matchings have
arbitrary number of branches and functions take arbitrary number of arguments,
we just use minimal illustrative examples for the sake of readability.

In Figure 3 four axioms of explicit substitutions [2] are shown. All of them
basically describe how to evaluate a node if it is an explicit substitution (using
call-by-name strategy). The answer is to push the substitution down (the last
three rules) until we reach a variable where we can just perform the actual
substitution (the first rule, (subst-id)). The appropriate rule depends on the
node we choose as the leftmost child of our substitution node – there are four
kinds of nodes, so there are four rules.

(subst-id) 𝑥 {𝑥 = 𝑔} ↦→ 𝑔

(subst-subst) 𝑓 𝑥 {𝑥 = 𝑔 𝑦} {𝑦 = ℎ} ↦→ 𝑓 𝑥 {𝑥 = 𝑔 𝑦 {𝑦 = ℎ}}
(subst-constr) 𝐶 (𝑓 𝑥) (𝑔 𝑥) {𝑥 = ℎ} ↦→ 𝐶 (𝑓 𝑥 {𝑥 = ℎ}) (𝑔 𝑥 {𝑥 = ℎ})
(subst-case-of) (case 𝑓 𝑥 of 𝐶 𝑦 → 𝑔 𝑥 𝑦) {𝑥 = ℎ} ↦→

case 𝑓 𝑥 {𝑥 = ℎ} of 𝐶 𝑦 → 𝑔 𝑥 𝑦 {𝑥 = ℎ, 𝑦 = 𝑦}

Fig. 3: Axioms of explicit substitutions



34 Sergei A. Grechanik

(case-of-constr) (case 𝐶 𝑒 of 𝐶 𝑦 → 𝑓 𝑥 𝑦) ↦→
𝑓 𝑥 𝑦 {𝑥 = 𝑥, 𝑦 = 𝑒}

(case-of-case-of) (case (case 𝑒 of 𝐶1 𝑦 → 𝑔) of 𝐶2 𝑧 → ℎ) ↦→
case 𝑒 of 𝐶1 𝑦 → (case 𝑔 of 𝐶2 𝑧 → ℎ)

(case-of-id) (case 𝑥 of 𝐶 𝑦 𝑧 → 𝑓 𝑥 𝑦 𝑧) ↦→
case 𝑥 of 𝐶 𝑦 𝑧 → 𝑓 𝑥 𝑦 𝑧 {𝑥 = (𝐶 𝑦 𝑧), 𝑦 = 𝑦, 𝑧 = 𝑧}

(case-of-transpose) case ℎ of {
𝐶1 𝑥 → case 𝑧 of 𝐷 𝑣 → 𝑓 𝑣 𝑥;
𝐶2 𝑦 → case 𝑧 of 𝐷 𝑣 → 𝑔 𝑣 𝑦;

} ↦→
case 𝑧 of 𝐷 𝑣 →

case ℎ of {
𝐶1 𝑥 → 𝑓 𝑣 𝑥;
𝐶2 𝑦 → 𝑔 𝑣 𝑦;

}

Fig. 4: Axioms of pattern matching

Usually substitution in the body of a function is performed as an indivisible
operation, but this kind of transformation would be too global for an E-graph,
so we use explicit substitutions to break it down.

There are two more rather technical but nonetheless important axioms con-
cerning substitution. The first one is elimination of unused variable bindings:

(subst-unused) 𝑓 𝑥 𝑦 {𝑥 = 𝑔, 𝑦 = ℎ, 𝑧 = 𝑘} ↦→ 𝑓 𝑥 𝑦 {𝑥 = 𝑔, 𝑦 = ℎ}

When this axiom is applied destructively (i.e. the original node is removed), it
considerably simplifies the E-graph. This axiom is the reason why we need the
information about used variables in every node.

The second axiom is conversion from a substitution that substitutes variables
for variables to a renaming:

(subst-to-renaming) 𝑓 𝑥 𝑦 {𝑥 = 𝑦, 𝑦 = 𝑧} ↦→ 𝑓 𝑦 𝑧

This axiom requires the original substitution to be injective. Note also that
application of this axiom results in merging of the equivalence classes corre-
sponding to the node representing the substitution and the node 𝑓 , so if they
are already in the same class, this axiom is inapplicable. We also apply this
axiom destructively.

3.4 Semantics of pattern matching

The axioms concerning pattern matching are shown in Figure 4. The first of
them, (case-of-constr), is essentially a reduction rule: if the scrutinee is an ex-
pression starting with a constructor, then we just substitute appropriate subex-
pressions into the corresponding case branch.



Inductive Prover Based on Equality Saturation 35

The next two axioms came from supercompilation [21,24]. They tell us what
to do when we get stuck during computation because of missing information (i.e.
a variable). The axiom (case-of-case-of) says that if we have a pattern matching
that scrutinizes the result of another pattern matching, then we can pull the
inner pattern matching out. The axiom (case-of-id) is responsible for positive
information propagation: if a case branch uses the variable being scrutinized,
then it can be replaced with its reconstruction in terms of the pattern variables.

The last axiom, (case-of-transpose), says that we can swap two consecutive
pattern matchings. This transformation is not performed by supercompilers and
is actually rarely useful in a non-total language.

3.5 Totality

If we assume that our language is total, then we can use all the axioms mentioned
above and also some more axioms that don’t hold in the presence of bottoms.
Although proving equivalence of total functions is not our main goal, our im-
plementation has a totality mode which enables three additional axioms from
Figure 5.

(case-of-constr-total) case ℎ of {
𝐶1 𝑥 → 𝐷 (𝑓 𝑥);
𝐶2 𝑦 → 𝐷 (𝑓 𝑦);

} ↦→
𝐷 (case ℎ of {

𝐶1 𝑥 → 𝑓 𝑥;
𝐶2 𝑦 → 𝑓 𝑦;

})
(case-of-transpose-total) case ℎ of {

𝐶1 𝑥 → case 𝑧 of 𝐷 𝑣 → 𝑓 𝑣 𝑥 𝑧;
𝐶2 𝑦 → 𝑔 𝑦;

} ↦→
case 𝑧 of 𝐷 𝑣 →

case ℎ of {
𝐶1 𝑥 → 𝑓 𝑣 𝑥 𝑧;
𝐶2 𝑦 → 𝑔 𝑦;

}
(useless-case-of-total) case ℎ of {

𝐶1 𝑥 → 𝑓 ;
𝐶2 𝑦 → 𝑓 ;

} ↦→
𝑓

Fig. 5: Additional axioms of pattern matching in total setting



36 Sergei A. Grechanik

The axiom (case-of-constr-total) lifts equal constructors from case branches.
If 𝐸 could be bottom, then it wouldn’t be correct to do that (actually the axiom
makes the function lazier). Note that constructors may have arbitrary arity.

The axiom (case-of-transpose-total) is a variation of the axiom (case-of-
transpose). It may swap the pattern matchings even if inner pattern matching
is not performed in some branches of the outer one.

The axiom (useless-case-of-total) removes an unnecessary pattern matching
when all of its branches are equal (they can’t use pattern variables (𝑥 and 𝑦 in
this case) though).

3.6 On correctness and completeness

Correctness of the mentioned axioms can be easily proved if we fix an appropriate
semantics for the language.

Since the problem of function equivalence is undecidable, no finite set of
axioms can be complete, but we can compare our set of axioms with other
transformers. If we take all the axioms from Figure 3 and the axiom (case-
of-constr) from Figure 4, we will be able to perform interpretation. If we also
add axioms (case-of-case-of) and (case-of-id) from Figure 4, then we will be
able to perform driving (interpretation with incomplete information, i.e. with
free variables). Given infinite time, driving allows us to build a perfect tree for a
function (which is something like an infinite tabular representation of a function).
Perfect trees consist of constructors, variables and pattern matchings on variables
with positive information fully propagated. Perfect trees aren’t unique, some
functions may have multiple perfect trees, and the (case-of-transpose) axiom
is used to mitigate this problem (although not eliminate it completely). The
totality axioms (Figure 5) equate even more perfect trees by rearranging their
nodes.

Of course, we could add more axioms. For example, in the total case we
could use an axiom to lift pattern matchings through explicit substitutions, not
only other pattern matchings. Or we could add generalizations which are used
in supercompilers. All of this would make our equality saturator more powerful
but at the cost of lower performance. So this is all about balance. As for
the generalization, in the case of equality saturation expressions are already in
generalized state, and we can transform any subexpression of any expression.
It’s not a complete solution to the problem of generalization since it’s only equal
to peeling the outer function call from an expression, but it still allows us to
solve many examples that can’t be solved with driving alone.

Another issue is proof by induction or coinduction. In supercompilers coin-
duction is implicitly applied when we build a residual program. Higher level
supercompilers and inductive provers are able to apply (co)induction several
times, thus proving the lemmas needed to prove the target proposition. In
our equality saturator (co)induction is implemented as a special transformation
called merging by bisimilarity which is discussed in Section 4.



Inductive Prover Based on Equality Saturation 37

3.7 Axioms applied destructively

We apply some transformations destructively, i.e. remove the original nodes and
edges that triggered the transformation. It is a deviation from pure equality
saturation approach, but it is a necessary one. Currently the transformations
we apply destructively are (subst-id), (subst-unused), (subst-to-renaming), and
(case-of-constr). We have tried to switch on and off their destructivity. Turned
out that non-destructive (case-of-constr) leads to a lot of failures on our test suite
(due to timeouts), but helps to pass one of the tests that cannot be passed when
it’s destructive (which is expected: non-destructive transformations are strictly
more powerful when there is no time limit). Non-destructive (subst-unused) has
a similar effect: it helps to pass two different tests, but at the price of failing sev-
eral other tests. At last, non-destructivity of (subst-id) and (subst-to-renaming)
doesn’t impede the ability of our tool to pass tests from our test suite but when
either of them is applied non-destructively, our tool becomes about 15% slower.
We also tried to make all the mentioned transformations non-destructive, which
rendered our tool completely unusable because of combinatorial explosion of the
E-graph, which substantiates the importance of at least some destructivity.

4 Merging by bisimilarity

The axiom of congruence can merge two functions into one equivalence class if
they have the same tree representation. But if their definitions involve separate
(but equal) cycles, then the congruence axiom becomes useless. Consider the
following two functions:

f = S f
g = S g

If they aren’t in the same equivalence class in the first place, none of the already
mentioned axioms can help us equate them. Here we need some transformation
that is aware of recursion. Note that in the original implementation of equality
saturation called Peggy [23] there is such a transformation that merges 𝜃-nodes,
but it doesn’t seem to be published anywhere and it is much less powerful than
the one described here.

The general idea of this kind of transformation is to find two bisimilar sub-
graphs growing from the two given nodes from different equivalence classes and
merge these equivalence classes if the subgraphs have been found. Note though
that not every subgraph is suitable. Consider the following nondeterministic
program:

f x = C; g x = D
f x = f (f x); g x = g (g x)

The functions 𝑓 and 𝑔 are different but they both are idempotent, which is stated
by the additional definitions, so we have two equal closed subgraphs “defining”
the functions:



38 Sergei A. Grechanik

f x = f (f x)
g x = g (g x)

Of course, we cannot use subgraphs like these to decide whether two functions
are equal, because they don’t really define the functions, they just state that
they have the property of idempotence. So we need a condition that guarantees
that there is (semantically) only one function satisfying the subgraph.

In our implementation we employ the algorithm used in Agda and Foetus to
check if a recursive function definition is structural or guarded [4]. These condi-
tions are usually used in total languages to ensure termination and productivity,
but we believe that they can be used to guarantee uniqueness of the function
satisfying a definition in a non-total language with infinite and partial values,
although a proof of this claim is left for future work. Informally speaking, in this
case guarded recursion guarantees that there is data output between two con-
secutive recursive function calls, and structural recursion guarantees that there
is data input between them (i.e. a pattern matching on a variable that hasn’t
been scrutinized before). It’s not enough for function totality since the input
data may be infinite, but it defines the behaviour of the function on each input,
thus guaranteeing it to be unique.

Note that there is a subtle difference between subgraphs that may have mul-
tiple fixed points and subgraphs that have a single fixed point equal to bottom.
Consider the following function “definition”:

f x = f x

The least fixed point interpretation of this function is bottom. But there are
other fixed points (actually, any one-argument function is a fixed point of this
definition). Now consider the following function:

f x = eat infinity
infinity = S infinity
eat x = case x of { S y → eat y }

The definition of infinity is guardedly recursive, and the definition of eat is struc-
turally recursive. The least fixed point interpretation of the function f is still
bottom but now it is guaranteed to be the only interpretation.

Of course, this method of ensuring uniqueness may reject some subgraphs
having a single fixed point, because the problem is undecidable in general. Note
also that this is not the only possible method of ensuring uniqueness. For ex-
ample, we could use ticks [19] as in two-level supercompilation [15]. Ticks are
similar to constructors but have slightly different properties, in particular they
cannot be detected by pattern matching. Tick transformations could be encoded
as axioms for equality saturation.

4.1 Algorithm description

In this subsection we’ll describe the algorithm that we use to figure out if two
nodes have two bisimilar subgraphs growing from them and meeting the unique-
ness condition. First of all, the problem of finding two bisimilar subgraphs is a



Inductive Prover Based on Equality Saturation 39

function merge-by-bisimilarity(𝑚, 𝑛)
if bisimilar?(𝑚, 𝑛, ∅) then merge(𝑚, 𝑛)

function bisimilar?(𝑚, 𝑛, history)
if 𝑚 ∼= 𝑛 then return true
else if ∃(𝑚′, 𝑛′) ∈ history : 𝑚′ ∼= 𝑚 ∧ 𝑛′ ∼= 𝑛 then

if the uniqueness condition is met then
return true

else
return false

else if 𝑚 and 𝑛 are incompatible then return false
else

for (𝑚′, 𝑛′) : 𝑚′ ∼= 𝑚 ∧ 𝑛′ ∼= 𝑛 ∧ label(𝑚′) = label(𝑛′) do
children pairs = zip(children(𝑚′), children(𝑛′))
if length(children(𝑚′)) = length(children(𝑛′))

and ∀ (𝑚′′, 𝑛′′) ∈ children pairs
bisimilar?(𝑚′′, 𝑛′′, {(𝑚′, 𝑛′)} ∪ history) then

return true
return false

Fig. 6: Merging by bisimilarity

variation of the subgraph bisimulation problem which is NP-complete [8]. In cer-
tain places we trade completeness for performance (so sometimes our algorithm
fails to find the subgraphs when they exist), but merging by bisimilarity is still
one of the biggest performance issues in our experimental implementation. The
merging by bisimilarity algorithm that we use is outlined in Figure 6. It checks
(using the function bisimilar?) if there are two bisimilar subgraphs meeting
the uniqueness condition, and if there are, merges the equivalence classes of the
nodes. Checking for bisimilarity essentially consists in simultaneous depth-first
traversal of the E-graph from the given nodes. This process resembles super-
compilation.

The function bisimilar? works as follows. If the two nodes are equal, then
they are bisimilar and we return true. If we encounter a previously visited
pair of nodes (up to ∼=), we check if the uniqueness condition holds, and if
it does, we return true (this case corresponds to folding in supercompilation),
and otherwise we stop trying and return false (this case doesn’t guarantee that
there’s no bisimulation, but we do it for efficiency). This case also ensures
termination of the algorithm since the number of nodes in the E-graph is finite,
and they are bound to repeat at some point. Note that some kinds of uniqueness
conditions have to be checked after the whole bisimulation is known (and the
guardedness and structurality checker is of this kind since it needs to know all the
recursive call sites). In this case it is still advantageous to check some prerequisite
condition while folding, which may be not enough to guarantee correctness, but
enough to filter out obviously incorrect graphs.



40 Sergei A. Grechanik

If neither of the two previous cases is applicable, we check if the two nodes
are at least compatible (again, for efficiency reasons, we could do without it in
theory). That means that there are no nodes equal to them that have incompat-
ible labels, like different constructors or a constructor and a pattern matching
on a variable. If the nodes are compatible, we go on and check all pairs of nodes
equivalent to the original ones. If there is a pair of nodes such that their children
are bisimilar, then the original pair is bisimilar.

We can extract the actual bisimulation by collecting all the node pairs on
which we return true (we will call this relation 𝑅). We can also extract the
two bisimilar subgraphs (actually, E-subgraphs) by taking the corresponding
elements of these pairs (either left or right) and outgoing edges for those nodes
that occurred bisimilar to some other nodes because their children were bisimilar.
Indeed, the roots of these two subgraphs are in 𝑅 (up to ∼=) since the function
bisimilar? returned true, and each pair of nodes from 𝑅 is either a pair of
equivalent nodes (in which case their outgoing edges are not included in the
subgraph) or a pair of nodes with equal labels such that their pairs of children
are in 𝑅 (up to ∼=). This substantiates the name of this transformation. And
again we emphasize that the existence of two bisimilar subgraphs proves that
the nodes are equivalent only if they meet the uniqueness condition.

Note that in our description of the algorithm we ignored the question of
renamings. We did it for the sake of brevity, and actually (since we want to
merge nodes even if they are equal only up to some renaming) we should take
them into account which complicates the real implementation a little bit.

5 On order of transformation

Our experimental implementation of an equivalence prover for a first-order lazy
language based on equality saturation is written in Scala and can be found on
GitHub [1].

In our implementation we deviate from pure equality saturation for practical
reasons. Pure equality saturation approach requires all transformations to be
monotone with respect to the ordering ⊑ on E-graphs where 𝑔1 ⊑ 𝑔2 means
that the set of equalities encoded by 𝑔1 is a subset of the corresponding set for
𝑔2. Moreover, it requires them to be applied non-destructively, i.e. 𝑔 ⊑ 𝑡(𝑔) for
each transformation 𝑡 (in other words, we cannot remove nodes and edges, and
split equivalence classes). But in return we are granted with a nice property: if
we reach the fully saturated state (no transformation can change the E-graph
further), then the resulting E-graph will be the same no matter in what order
we have applied the transformations.

Unfortunately, in reality this is not very practical. First of all, saturation can
never be reached if our axioms are complex enough (or at least it will take too
long). In particular, the axioms we described above can be applied indefinitely
in most cases. To solve this problem we should limit the axiom application. We
can do this either by sacrificing randomness of the order of axiom application
and simply limiting the total number of applications, or by using some limiting



Inductive Prover Based on Equality Saturation 41

monotone preconditions (similar to whistles in supercompilers), e.g. limiting the
depth of the nodes to which axioms may be applied.

Second, if we always apply axioms non-destructively, we may find ourselves
with an E-graph littered with useless garbage. But applying axioms destructively
makes the randomness of axiom applications questionable, to say the least. Of
course, the system may preserve the nice property of ordering independence, but
it may be much harder to prove.

All in all, more or less deterministic order of transformation seems very
desirable in practice. In our implementation we use the following order:

1. Transform the programs into an E-graph.
2. Apply all possible non-destructive transformations except merging by bisimi-

larity, congruence and injectivity to the equations that are already in E-graph
but not to the equations that are added by the transformations performed
in this step. This can be done by postponing the effects of transformations:
first, we collect the effects of applicable transformations (nodes and edges to
add, and classes to merge), then we apply all these effects at once.

3. Perform E-graph simplification: apply congruence, injectivity and destruc-
tive transformations to the E-graph until the saturation w.r.t. these trans-
formations is reached. It is quite safe since all these transformations are
normalizing in nature (i.e. they simplify the E-graph).

4. Perform merging by bisimilarity over each pair of equivalence classes. Pairs
of equivalence classes are sorted according to resemblance of their compo-
nents, and then the merging by bisimilarity algorithm is applied to them
sequentially. After each successful merge perform E-graph simplification ex-
actly as in the previous step.

5. Repeat steps 2–5 until the goal is reached.

This way E-graph is being built in a breadth-first manner, generation by gener-
ation, each generation of nodes and edges results from applying transformations
to the nodes and edges of the previous generations. An exception from this
general rule is a set of small auxiliary (but very important) transformations con-
sisting of congruence, injectivity and all the destructive transformations which
are applied until the saturation because they always simplify the E-graph.

6 Example

In this section we’ll discuss a simple example to illustrate how the transforma-
tions described earlier work in practice. Consider the following program:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }
oddSlow n = not (evenSlow n)



42 Sergei A. Grechanik

It defines functions that check if a natural number is odd or even. The func-
tions even and odd are defined efficiently using tail recursion, but the functions
evenSlow and oddSlow will need linear amount of memory during the execution.
Still, they are semantically equivalent, so we want to prove that even = evenSlow.

We will follow the scheme from the previous section. The program above cor-
respond to the initial state of the E-graph and constitutes the zeroth generation.
Now we should apply all applicable transformations to it. The only application
that produces something new after simplification is of the transformation (subst-
case-of) to the nodes oddSlow n = not (evenSlow n) and not b = case b of {...}.
Indeed, it produces

oddSlow n = case (n { n = evenSlow n }) of { T → F; F → T }

which is immediately simplified by destructive application of (subst-id) to

oddSlow n = case (evenSlow n) of { T → F; F → T }

Actually this sequence of transformation is just expansion of the function not.
This new definition of oddSlow appears in the E-graph alongside with the old
definition of oddSlow. The current state of the E-graph is the first generation.

Now it is possible to apply the transformation (case-of-case-of) to the nodes
oddSlow n = case (evenSlow n) of {...} and evenSlow n = case n of {...} which
after simplification with (case-of-constr) gives the following definition:

oddSlow n = case n of { Z → F; S m → evenSlow2 m }
evenSlow2 m = case (oddSlow m) of { T → F; F → T }

Here evenSlow2 is an auxiliary function which is actually equal to evenSlow,
but we don’t know that yet. The current state of the E-graph is the second
generation.

Now we apply (case-of-case-of) to these last two definitions which give us the
following:

evenSlow2 n = case n of { Z → T; S m → oddSlow2 m }
oddSlow2 m = case (evenSlow2 m) of { T → F; F → T }

Again, we had to introduce a new function oddSlow2 which will turn out to be
equal to oddSlow.

We should also apply (case-of-case-of) to the same definition of evenSlow2 and
a different definition of oddSlow, namely oddSlow n = case (evenSlow n) of {...},
which gives us

evenSlow2 m = case (evenSlow m) of { T → T; F → F }

Although from this definition it is quite obvious that evenSlow2 = evenSlow, it
is of no use to us: since our internal representation is untyped, evenSlow may
return something different from T and F, and the fact that it can’t should be
proved by induction. Instead, other definitions will be used to show by induction
that this equivalence holds.

First of all, let’s see what the E-graph currently looks like:



Inductive Prover Based on Equality Saturation 43

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }

oddSlow n = not (evenSlow n)
oddSlow n = case (evenSlow n) of { T → F; F → T }
oddSlow n = case n of { Z → F; S m → evenSlow2 m }

evenSlow2 n = case n of { Z → T; S m → oddSlow2 m }
evenSlow2 m = case (oddSlow m) of { T → F; F → T }
evenSlow2 m = case (evenSlow m) of { T → T; F → F }

oddSlow2 m = case (evenSlow2 m) of { T → F; F → T }

Now we can extract two equal definitions for function pairs evenSlow, oddSlow,
and evenSlow2, oddSlow2, the corresponding nodes are highlighted. Here is the
definitions for the first pair:

evenSlow n = case n of { Z → T; S m → oddSlow m }
oddSlow n = case (evenSlow n) of { T → F; F → T }

The definitions for the second pair of functions is the same up to function names
and names of bound variables. As it can be seen, all the recursive calls here are
preformed on structurally smaller arguments, so there may be no more than one
fixed point of each subgraph, and since the subgraphs are bisimilar, we come
to a conclusion that evenSlow = evenSlow2 and oddSlow = oddSlow2. Let’s add
this information to the E-graph, thus performing merging by bisimilarity:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }
evenSlow n = case (oddSlow n) of { T → F; F → T }
evenSlow n = case (evenSlow n) of { T → T; F → F }

oddSlow n = not (evenSlow n)
oddSlow n = case (evenSlow n) of { T → F; F → T }
oddSlow n = case n of { Z → F; S m → evenSlow m }

Now we can perform another merging by bisimilarity to equate the functions even
and evenSlow. The needed bisimilar subgraphs conists of the nodes highlighted
in the above program. The resulting E-graph is the third (and last, since we’ve
reached the goal) generation and looks like this:



44 Sergei A. Grechanik

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
even n = case (odd n) of { T → F; F → T }
even n = case (even n) of { T → T; F → F }

odd n = case n of { Z → F; S m → even m }
odd n = not (even n)
odd n = case (even n) of { T → F; F → T }

It is interesting to point out that although we proved the goal statement us-
ing two mergings by bisimilarity (i.e. we used a lemma), we could have managed
with only one if we had waited till the fourth generation without using induc-
tion. So sometimes lemmas aren’t really required but may lead to earlier proof
completion. Still, it doesn’t mean that the proof will be found faster, even more,
usually our tool takes slightly less time if we restrict application of merging by
bisimilarity to the nodes from the goal statement since it doesn’t have to check
all equivalence class pairs from the E-graph in this case – but this is achieved at
the cost of failures on tasks that really require lemmas.

7 Experimental evaluation

We’ve used a set of simple equations to evaluate our prover and compare it to
similar tools. We’ve split this set into four groups: a main group of relatively
simple equalities (Table 1) which don’t seem to need any special features, a
group of equalities that require nontrivial generalizations (Table 2), a group of
equalities that need strong induction (Table 3), and a group of equalities that
require coinduction (Table 4). The tests can be found in our repository [1] under
the directory samples. For some of the tests we gave human-readable equations
in the second column – note though that real equations are often a bit more
complex because we have to make sure that they hold in a non-total untyped
language.

The tables show average wall-clock time in seconds that the tools we’ve tested
spent on the tests. We used a time limit of 5 minutes, runs exceeding the time
limit counted as failures. We ran our benchmark on an Intel(R) Core(TM) i7 930
@ 2.80 GHz machine with Ubuntu 12.04. The tools we used in our benchmarking
were:

– graphsc. Graphsc is our experimental prover based on the methods de-
scribed in this paper. Note that although it internally works only with
first-order functions, and there are many equalities in our sets involving
higher-order functions, it can still prove them, because we perform defunc-
tionalization before conversion to E-graph.

– hosc. HOSC is a supercompiler designed for program analysis, including the
problem of function equivalence [12] (but it’s not perfectly specialized for
this task). It uses the following technique: first supercompile left hand side



Inductive Prover Based on Equality Saturation 45

and right hand side separately and then syntactically compare the residual
programs [14,17]. The column labeled hosc (hl) corresponds to the higher-
level version of HOSC [13, 15]. It can come up with lemmas necessary to
prove the main goal and prove them using a single-level HOSC.

– zeno. Zeno [20] is an inductive prover for Haskell. Internally it is quite
similar to supercompilers. Zeno assumes totality, so it is not fair to compare
tools that don’t (our tool and HOSC) to pure Zeno, so we used a trick
to encode programs operating on data with bottoms as total programs by
adding additional bottom constructor to each data type. The results of Zeno
on the adjusted samples are shown in the column zeno (p). The results of
pure Zeno (assuming totality) are shown for reference in the column zeno
(t).

– hipspec. HipSpec [5] is an inductive prover for Haskell which can generate
conjectures by testing (using QuickSpec [6]), prove them using an SMT-
solver, and then use them as lemmas to prove the goal and other conjectures.
Like Zeno, HipSpec assumes totality, so we use the same transformation
to model partiality. The results are shown in columns hipspec (p) and
hipspec (t). Note also that the results of HipSpec are sensitive to the
Arbitrary type class instances for data types. We generated these instances
automatically and ran HipSpec with --quick-check-size=10 to maximize
the number of tests passed given these instances. We also used the maximal
induction depth of 2 (-d2) to make HipSpec pass two tests requiring strong
induction.

Since the test set is not representative, it is useless to compare the tools by
the number of test they pass. Moreover, the tools seem to fall into different
niches. Still, some conclusions may be drawn from the results.

First of all, HipSpec is a very powerful tool, in total mode it proves most of
the equalities from the main set (Table 1) and all of the equalities that require
complex generalizations (Table 2). However, it is very slow on some tests. It is
also much less powerful on tests adjusted with bottoms. Indeed, partial equalities
are often a bit trickier to prove than their total counterparts. It is also possible
that this particular approach of reducing a partial problem to a total one and
then using a total prover is not very efficient.

Zeno and HOSC are very fast which seems to be due to their depth-first
nature. Zeno is also quite powerful and can successfully compete with the slower
HipSpec, especially in the partial case. HOSC fails many test from the main set
presumably due to the fact that it is not specialized enough for the task of proving
equivalences. For example, the equivalence idle-simple is much easier to prove
when transforming both sides simultaneously. Also HOSC can’t prove bool-eq

and sadd-comm because they need the transformation (case-of-transpose) which
supercompilers usually lack. Interestingly, higher-level HOSC does prove some
additional equalities, but not in the case of tests that really need lemmas (except
even-double-acc from Table 2), which are the last four tests in the main set
(they need lemmas in a sense that neither Graphsc, nor HipSpec can prove them
without lemmas).



46 Sergei A. Grechanik

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

add-assoc x + (y + z) = (x + y) + z 1.6 0.5 0.6 0.3 0.3 8.8 0.9
append-assoc x ++ (y ++ z) =

(x ++ y) ++ z
1.8 0.5 0.6 0.3 1.1 4.9 3.2

double-add double (x+y) =
double x + double y

2.2 0.6 0.6 0.3 0.3 21.5 2.0

even-double even (double x) = true 1.7 0.6 0.6 0.3 0.3 82.5 97.9
ho/concat-concat concat (concat xs) =

concat (map concat xs)
3.2 0.6 0.7 0.4 0.4 80.0 47.0

ho/filter-append filter p (xs ++ ys) =
filter p xs ++ filter p ys

3.0 0.6 0.8 0.3 0.3 9.6 4.8

ho/map-append map f (xs ++ ys) =
map f xs ++ map f ys

2.1 0.6 0.7 0.3 0.3 9.8 4.5

ho/map-comp map (f . g) xs =
(map f . map g) xs

3.4 0.6 0.6 0.3 0.3 4.7 4.7

ho/map-concat map f (concat x) =
concat (map (map f) x)

2.8 0.6 0.7 0.3 0.3 91.4 47.9

ho/map-filter filter p (map f xs) =
map f (filter (p . f) xs)

3.6 0.7 0.7 0.3 0.3 6.3 5.8

idnat-idemp idNat (idNat x) = idNat x 1.5 0.5 0.5 0.3 0.3 0.8 0.7
take-drop drop n (take n x) = [] 2.4 0.6 0.7 0.3 0.3 47.8 9.6
take-length take (length x) x = x 2.3 0.6 0.6 0.3 0.3 6.8 7.9
length-concat length (concat x) =

sum (map length x)
2.8 0.7 0.8 0.3 0.3 fail 8.5

append-take-drop take n x ++ drop n x = x 3.6 fail 1.1 0.5 0.3 113.0 11.9
deepseq-idemp deepseq x (deepseq x y) =

deepseq x y
1.8 fail 0.9 0.3 0.3 4.7 1.6

deepseq-s deepseq x (S y) =
deepseq x (S (deepseq x y))

2.1 fail 0.7 0.3 0.3 10.1 0.7

mul-assoc (x * y) * z = x * (y * z) 11.6 0.8 fail 0.3 0.4 176.2 30.4
mul-distrib (x*y) + (z*y) = (x + z)*y 3.9 0.7 fail 0.3 0.3 151.8 92.1
mul-double x * double y = double (x*y) 5.1 0.6 fail 0.3 0.3 165.6 142.1
ho/fold-append foldr f (foldr f a ys) xs =

foldr f a (xs ++ ys)
2.1 0.6 0.7 fail 0.3 176.8 4.6

ho/church-id unchurch (church x) = x 6.1 0.6 0.6 0.3 0.3 fail fail
ho/church-pred fail 0.7 0.8 fail fail fail fail
ho/church-add fail 0.7 0.7 0.3 0.3 fail fail
idle-simple idle x = idle (idle x) 1.4 fail fail 0.3 0.3 0.8 0.7
bool-eq 1.3 fail fail 0.3 0.3 1.1 0.8
sadd-comm 2.1 fail fail 0.3 0.3 3.3 16.7
ho/filter-idemp filter p (filter p xs) =

filter p xs
fail fail fail 0.3 0.3 1.3 0.9

even-slow-fast even x = evenSlow x 1.8 fail fail fail fail 2.6 1.1
or-even-odd even x || odd x = true 3.9 fail fail fail 0.3 128.9 1.0

dummy 1.6 fail fail 0.3 0.3 2.4 0.8
idle idle x = deepseq x 0 1.5 fail fail 0.3 0.3 1.8 0.7
quad-idle 1.9 fail fail 0.3 0.3 fail 0.7
exp-idle 3.4 fail fail 0.3 fail fail 1.7

Table 1: Comparison of different tools on the main test subset



Inductive Prover Based on Equality Saturation 47

Our tool, Graphsc, seems to be in the middle: it’s slower than HOSC and
Zeno (and it should be since it’s breadth-first in nature) but rarely needs more
than 10 seconds. It’s interesting to analyze the failures of our tool. It fails three
tests from the main set. The tests ho/church-pred and ho/church-add need
deeper driving, our tool can pass them in the experimental supercompilation
mode which change the order of transformation to resemble that of traditional
supercompilers. Unfortunately, this mode is quite slow and leads to many other
failures when enabled by default. The test ho/filter-idemp is interesting:
it needs more information to be propagated, namely that the expression p x
evaluates to True. Since this expression is not a variable, we don’t propagate
this information (and neither does HOSC, however there is an experimental
mode for HOSC that does this and helps pass this test).

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

even-dbl-acc-lemma even (doubleAcc x (S y)) =
odd (doubleAcc x y)

fail 0.7 0.6 0.3 0.3 38.8 37.4

nrev-idemp-nat fail fail fail 0.3 0.3 21.9 2.0
deepseq-add-comm fail fail fail fail 0.3 fail 2.1
even-double-acc even (doubleAcc x 0) = true fail fail 0.8 fail fail fail 38.4
nrev-list naiveReverse = reverse fail fail fail fail fail 185.5 19.7
nrev-nat fail fail fail fail fail fail 1.1

Table 2: Comparison of the tools on the tests that require nontrivial generaliza-
tion

Now let’s look at the tests requiring nontrivial generalizations (Table 2). Here
we call a generalization trivial if it’s just peeling of the outer function call, e.g.
f (g a) (h b c) trivially generalizes to f x y with x = g a and y = h b c. Our tool
supports only trivial generalizations, and they are enough for a large number of
examples. But in some cases more complex generalizations are needed, e.g. to
prove the equality even-dbl-acc-lemma one need to generalize the expression
odd (doubleAcc x (S (S y))) to odd (doubleAcc x z) with z = S (S y). It’s not
super sophisticated, but the expression left after taking out the S (S y) is a
composition of two functions, which makes this generalization nontrivial. Our
tool is useless on these examples. Supercompilers like HOSC usually use most
specific generalizations which helps in some cases. But the best tool to prove
equalities like these is HipSpec (and still it doesn’t work that well in the partial
case).

In Table 3 the tests are shown that require strong induction, i.e. induction
schemes that peel more than one constructor at a time. This is not a problem
for Graphsc and HOSC since they don’t explicitly instantiate induction schemes.
But Zeno and HipSpec do. In the case of HipSpec the maximum induction depth
can be increased, so we specified the depth of 2, which helped HipSpec to pass
two of these tests at the price of increased running times for other tests.



48 Sergei A. Grechanik

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

add-assoc-bot 2.1 0.6 0.6 fail fail fail fail
double-half double (half x) + mod2 x = x 4.6 fail 1.2 fail fail 81.7 6.6
length-intersperse length (intersperse x xs) =

length (intersperse y xs)
fail 0.6 0.7 fail fail 1.6 0.9

kmp-eq fail 1.2 1.7 fail fail fail fail

Table 3: Comparison of the tools on the tests that require strong induction

Our tool doesn’t pass the KMP-test because it requires deep driving (and
again, our experimental supercompilation mode helps pass it). In the case of
length-intersperse it has trouble with recognizing the goal as something
worth proving because both sides are equal up to renaming. Currently it is
not obvious how this (seemingly technical) problem can be solved.

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

inf fix S = fix S 1.2 0.4 0.5 fail fail fail fail
shuffled-let 1.5 0.5 0.5 fail fail fail fail
shifted-cycle cycle [A,B] = A : cycle [B,A] 3.6 fail fail fail fail fail fail
ho/map-iterate map f (iterate f a) =

iterate f (f a)
fail 0.6 0.6 fail fail fail fail

Table 4: Comparison of the tools on the tests that require coinduction

The last test subset to discuss is the subset of tests requiring coinduction
(Table 4). Coinduction is not currently supported by Zeno and HipSpec, al-
though there are no obstacles to implement it in the future. The equality
ho/map-iterate can’t be proved by our tool because besides coinduction it
needs a nontrivial generalization.

8 Related work

Our work is based on the method of equality saturation, originally proposed
by Tate et al [23], which in turn is inspired by E-graph-based theorem provers
like Simplify [7]. Their implementation, named Peggy, was designed to trans-
form programs in low-level imperative languages (Java bytecode and LLVM),
although internally Peggy uses a functional representation. In our work we
transform lazy functional programs, so we don’t have to deal with encoding im-
perative operations in functional representation, which makes everything much
easier. Another difference is that in our representation nodes correspond to
functions, not just first-order values, which allows more general recursion to be
used, moreover we merge equivalence classes corresponding to functions equal
up to parameter permutation, which considerably reduces the E-graph complex-
ity. We also articulate the merging by bisimilarity transformation which plays a



Inductive Prover Based on Equality Saturation 49

very important role, making our tool essentially an inductive prover. Note that
Peggy has a similar (but simpler) transformation that can merge 𝜃-nodes, but
it doesn’t seem to be published anywhere.

Initially our work arose from analyzing differences between overgraph su-
percompilation [9] and equality saturation, overgraph supercompilation being
a variety of multi-result supercompilation with a flavor of equality saturation.
The present paper is loosely based on the preprint [10] which used a different
terminology (hypergraph instead of E-graph, hence the name of our GitHub
repository). We also used to consider the method to be a kind of supercompila-
tion, but although it borrows a lot from supercompilation, it is much closer to
equality saturation.

Supercompilation [24] is a program transformation technique that consists
in building a process tree (perhaps implicitly) by applying driving and gener-
alization to its leaves, and then folding the tree, essentially producing a finite
program, equivalent to the original one. Although supercompilation is usually
considered a source-to-source program transformation, it can be used to prove
program equivalence by syntactically comparing the resulting programs, due to
the normalizing effect of supercompilation.

Traditional supercompilers always return a single program, but for some
tasks, like program analysis, it is beneficial to produce a set of programs for
further processing. This leads to the idea of multi-result supercompilation, which
was put forward by Klyuchnikov and Romanenko [16]. Since there are many
points of decision making during the process of supercompilation (mainly when
and how to generalize), a single-result supercompiler may be transformed into a
multi-result one quite easily by taking multiple paths in each such point. The
mentioned motivation behind multi-result supercompilation is essentially the
same as that behind equality saturation.

Another important enhancement of traditional supercompilation is higher-
level supercompilation. Higher-level supercompilation is a broad term denoting
systems that use supercompilation as a primitive operation, in particular su-
percompilers that can invent lemmas, prove them with another (lower-level)
supercompiler, and use them in the process of supercompilation. Examples of
higher-level supercompilation are distillation, proposed by Hamilton [11], and
two-level supercompilation, proposed by Klyuchnikov and Romanenko [13,15].

Zeno [20] is an inductive prover for Haskell which works quite similarly to
multi-result supercompilation. Indeed, Zeno performs case analysis and applies
induction (both correspond to driving in supercompilation) until it heuristically
decides to generalize or apply a lemma (in supercompilation this heuristic is
called a whistle). That is, both methods are depth-first in nature unlike the
equality saturation approach, which explores possible program transformations
in breadth-first manner.

HipSpec [5] is another inductive prover for Haskell. It uses theory exploration
to discover lemmas. For this purpose it invokes QuickSpec [6], which generates
all terms up to some depth, splits them into equivalence classes by random
testing, and then transforms these classes into a set of conjectures. After that



50 Sergei A. Grechanik

these conjectures are proved one by one and then used as lemmas to prove other
conjectures and the main goal. To prove conjectures HipSpec uses external SMT-
solvers. This bottom-up approach is contrasted to the top-down approach of
most inductive provers, including Zeno and supercompilers, which invent lemmas
when the main proof gets stuck. HipSpec discovers lemmas speculatively which
is good for finding useful generalizations but may take much more time.

As to our tool, we do something similar to the bottom-up approach, but
instead of using arbitrary terms, we use the terms represented by equivalence
classes of the E-graph (i.e. generated by transforming initial term) and then try
to prove them equal pairwise, discarding unfruitful pairs by comparing perfect
tree prefixes that have been built in the E-graph so far, instead of testing. Since
we use only terms from the E-graph, we can’t discover complex generalizations
this way, although we can still find useful auxiliary lemmas sometimes (but
usually for quite artificial examples).

Both Zeno and HipSpec instantiate induction schemes while performing proof
by induction. We use a different technique, consisting in checking the correctness
of a proof graph, similarly to productivity and termination checking in languages
like Agda. This approach has some advantages, for example we don’t have to
know the induction depth in advance. Supercompilers usually don’t even check
the correctness because for single-level supercompilation it is ensured automati-
cally. It is not the case for higher-level supercompilation, and for example, HOSC
checks that every lemma used is an improvement lemma in the terminology of
Sand’s theory [19].

9 Conclusion and future work

In this paper we have shown how an inductive prover for a non-total first-order
lazy functional language can be constructed on top of the ideas of equality sat-
uration. The key ingredient is merging by bisimilarity which enables proof by
induction. Another feature that we consider extremely important is the ability
to merge equivalence classes even if they represent functions equal only up to
some renaming. This idea can be extended, for example if we had ticks, we could
merge classes representing functions which differ by a finite number of ticks, but
we haven’t investigated into it yet.

Of course our prover has some deficiencies:

– Our prover lacks proper generalizations. This is a huge issue since many real-
world examples require them. We have an experimental flag that enables
arbitrary generalizations, but it usually leads to combinatorial explosion of
the E-graph. There are two plausible ways to fix this issue. The first one is to
use some heuristics to find generalizations from failed proof attempts, like it’s
done in supercompilers and many inductive provers. The other one is to rely
on some external generalization and lemma discovery tools. In this case a
mechanism of applying externally specified lemmas and generalizations may
be very useful. In the case of E-graphs it is usually done with E-matching,



Inductive Prover Based on Equality Saturation 51

and we have an experimental implementation, although it doesn’t work very
well yet.

– Although it is possible to prove some propositions that hold only in total
setting by adding some transformations, our prover is not very effective on
this task. It may not seem to be a big problem if we only work with non-
total languages like Haskell, but actually even in this case the ability to work
with total values is important since such values may appear even in partial
setting, e.g. when using the function deepseq.

– Our internal representation is untyped, and for this reason we cannot prove
some natural equalities.

– We don’t support higher-order functions internally and need to perform de-
functionalization if the input program contains them. This issue is especially
important if we want to produce a residual program.

– Our prover is limited to propositions about function equivalence, and it is
not obvious how to add support for implications.

Besides mitigating the above problems, another possibility for future work is
exploring other applications. Equality saturation is a program transformation
technique which is not limited to proving function equivalence. Initially it was
successfully applied to imperative program optimization, so some results in the
functional field are to be expected. Even merging by bisimilarity may be of some
use since it is known that using lemmas may lead to superlinear performance
improvement. Another possible area is program analysis.

Acknowledgements

The author would like to express his gratitude to Sergei Romanenko, Andrei
Klimov, Ilya Klyuchnikov, and other participants of the Refal seminar at Keldysh
Institute.

References

1. Graphsc source code and the test suite. https://github.com/sergei-grechanik/
supercompilation-hypergraph.

2. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991. Summary in ACM Symposium on
Principles of Programming Languages (POPL), San Francisco, California, 1990.

3. A. Abel. Foetus – termination checker for simple functional programs, July 16
1998.

4. A. Abel and T. Altenkrich. A predicative analysis of structural recursion. Journal
of Functional Programming, 12(1):1–41, 2002.

5. K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive
proofs using theory exploration. In M. P. Bonacina, editor, Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer
Science, pages 392–406. Springer, 2013.

https://github.com/sergei-grechanik/supercompilation-hypergraph
https://github.com/sergei-grechanik/supercompilation-hypergraph


52 Sergei A. Grechanik

6. K. Claessen, N. Smallbone, and J. Hughes. Quickspec: Guessing formal specifica-
tions using testing. In G. Fraser and A. Gargantini, editors, Tests and Proofs, 4th
International Conference, TAP 2010, Málaga, Spain, July 1-2, 2010. Proceedings,
volume 6143 of Lecture Notes in Computer Science, pages 6–21. Springer, 2010.

7. Detlefs, Nelson, and Saxe. Simplify: A theorem prover for program checking.
JACM: Journal of the ACM, 52, 2005.

8. A. Dovier and C. Piazza. The subgraph bisimulation problem. IEEE Transactions
on Knowledge & Data Engineering, 15(4):1055–6, 2003. Publisher: IEEE, USA.

9. S. A. Grechanik. Overgraph representation for multi-result supercompilation. In
A. Klimov and S. Romanenko, editors, Proceedings of the Third International
Valentin Turchin Workshop on Metacomputation, pages 48–65, Pereslavl-Zalessky,
Russia, July 2012. Pereslavl-Zalessky: Ailamazyan University of Pereslavl.

10. S. A. Grechanik. Supercompilation by hypergraph transformation. Preprint 26,
Keldysh Institute of Applied Mathematics, 2013.
URL: http://library.keldysh.ru/preprint.asp?id=2013-26&lg=e.

11. G. W. Hamilton. Distillation: extracting the essence of programs. In Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 61–70. ACM Press New York, NY, USA, 2007.

12. I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63, Keldysh
Institute of Applied Mathematics, Moscow, 2009.

13. I. Klyuchnikov. Towards effective two-level supercompilation. Preprint 81, Keldysh
Institute of Applied Mathematics, 2010. URL: http://library.keldysh.ru/

preprint.asp?id=2010-81&lg=e.
14. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms

by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

15. I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation. In
Second International Workshop on Metacomputation in Russia, 2010.

16. I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In E. Clarke, I. Vir-
bitskaite, and A. Voronkov, editors, Perspectives of Systems Informatics, 8th An-
drei Ershov Informatics Conference, PSI 2011, Akademgorodok, Novosibirsk, Rus-
sia, June 27 – July 01, 2011, volume 7162 of Lecture Notes in Computer Science,
pages 210–226. Springer, 2012.

17. A. Lisitsa and M. Webster. Supercompilation for equivalence testing in meta-
morphic computer viruses detection. In Proceedings of the First International
Workshop on Metacomputation in Russia, 2008.

18. Nelson and Oppen. Fast decision procedures based on congruence closure. JACM:
Journal of the ACM, 27, 1980.

19. D. Sands. Total correctness by local improvement in the transformation of func-
tional programs. ACM Trans. Program. Lang. Syst., 18(2):175–234, 1996.

20. W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for
properties of recursive data structures. In TACAS, Lecture Notes in Computer
Science, March 2012.

21. M. Sørensen, R. Glück, and N. Jones. A positive supercompiler. Journal of Func-
tional Programming, 6(6):811–838, 1993.

22. M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for LLVM.
In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Pro-
ceedings, volume 6806 of Lecture Notes in Computer Science, pages 737–742.
Springer, 2011.

http://library.keldysh.ru/preprint.asp?id=2013-26&lg=e
http://library.keldysh.ru/preprint.asp?id=2010-81&lg=e
http://library.keldysh.ru/preprint.asp?id=2010-81&lg=e


Inductive Prover Based on Equality Saturation 53

23. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new approach
to optimization. SIGPLAN Not., 44:264–276, January 2009.

24. V. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(3):292–325, 1986.


	Introduction
	Programs and E-graphs
	Node labels
	Merging

	Axioms
	Congruence
	Injectivity
	Semantics of explicit substitutions
	Semantics of pattern matching
	Totality
	On correctness and completeness
	Axioms applied destructively

	Merging by bisimilarity
	Algorithm description

	On order of transformation
	Example
	Experimental evaluation
	Related work
	Conclusion and future work
	References

