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Abstract. Supercompilation is a powerful program optimization frame-
work which Sørensen et al. showed to subsume, and exceed, partial eval-
uation and deforestation. Its main strength is that it optimizes a condi-
tional branch by assuming the branch’s guard tested true, and that it
can propagate this information to data that are not directly examined
in the guard. We show that both of these features can be mimicked in
multi-stage programming, a code generation framework, by modifying
metadata attached to generated code in-place. This allows for explicit,
programmer-controlled supercompilation with well-defined semantics as
to where, how, and whether a program is optimized. Our results show
that staging can go beyond partial evaluation, with which it originated,
and is also useful for writing libraries in high-level style where failing to
optimize away the overheads is unacceptable.
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1 Introduction

Supercompilation is a powerful metacomputation framework known to subsume
other systems like deforestation and partial evaluation [13]. A key benefit of such
frameworks is to enable the use of abstractions without runtime penalties. For
example, functional programs often split a loop into a function that produces
a stream of items and another function that performs work on each item. This
abstraction with streams greatly improves modularity, at the cost of more al-
location and time spent inspecting the stream. Supercompilation can eliminate
the stream, resolving the tension between abstraction and performance.

Supercompilation is usually studied as a fully automatic optimization, but
this approach has pros and cons. In exchange for the convenience of automation,
programmers lose control over when and how optimization happens, and it can
be difficult to tell whether supercompilation will eliminate a specific abstraction
used in a given source program. This can be problematic if failing to optimize is
unacceptable, as in embedded systems and high-performance computing.

Multi-stage programming (MSP) [17] has evolved as a tool to solve similar
problems with automation in the context of partial evaluation (PE). For instance,
the MSP language MetaOCaml can optimize the power function as follows.
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let rec power n x = if n = 1 then x else x * power (n-1) x

let rec genpow n x = if n = 1 then x else .<.~x * .~(genpow (n-1) x)>.

let rec stpow n = !. .<fun x → .~(genpow n .<x>.)>.

power computes xn, while stpow generates loop-unrolled power for concrete val-
ues of n using MetaOCaml’s three staging constructs. Brackets .<e>. delay the
expression e. An escape .~e must occur inside brackets and instructs e to be
evaluated without delay. The result must be of the form .<e′>., and e′ replaces
.~e. Run !.e compiles and runs the delayed expression returned by e. These
constructs are like LISP’s quasiquote, unquote, and eval but are hygienic, i.e.
preserves static scope [1]. In this example, genpow n .<x>. generates the code
.<x*x*. . .x>. with n copies of x, while stpow places that inside a binder to get
.<fun x → x*x*. . .x>. and compiles it by !. It is evident from the source code
that genpow completely unrolls the recursion seen in power and produces code
containing only *, because that’s the only operation occurring inside brackets.

In this paper, we bring this kind of explicit programmer control to supercom-
pilation through MSP techniques that mimic positive supercompilation [12,13].
Most importantly, we express the introduction and propagation of assumptions
under conditionals that Sørensen et al. [13] identified as the key improvements
that supercompilation makes over PE and deforestation. For example, in

let rec contrived zs =

let f xs ys = match xs with [] → length xs + length ys

| w::ws → length xs

in f zs (1::zs)

and length ws = match ws with [] → 0

| _::ws → 1 + length ws

positive supercompilation optimizes the first branch of the match by assuming
xs = [] and simplifying the branch body, which gives 0 + length ys. Moreover,
noting ys shares a substructure with xs, it propagates the assumption xs = []

to ys = [1], optimizing the whole branch to just 1. By pattern-matching on xs,
we learn something about ys, and the supercompiler tracks this knowledge.

In our technique of delimited assumptions, we manipulate not raw code values
like .<x>. in the power example, but a wrapper that attaches information about
the value x must have. We update this metadata when we generate a branch of
a conditional to reflect any new assumptions. We modify the metadata in place
to propagate the change to all copies of the data. This modification is undone
by a dynamic wind when that branch is left, giving the assumption a (dynamic)
scope delimited by the conditional. We show in this paper how this technique,
combined with auxiliary techniques for ensuring termination of the generator,
can achieve a great deal of the effects of supercompilation.

1.1 Contributions

We will use the contrived function above as a running example to illustrate the
main techniques. Specifically, after reviewing in more detail how the positive
supercompiler works (Section 2):
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– We introduce the technique of delimited assumptions, which combines par-
tially static data [11] with judicious uses of mutation to achieve the intro-
duction and propagation of assumptions explained above (Section 3).

– We show memoization techniques for ensuring termination of the generator,
explaining unique challenges posed by supercompilation (Section 4). Briefly,
conditionals are converted to functions and invoked whenever a conditional
of the same form is encountered, where the criterion for sameness must be
modeled after α-invariant folding.

– We show that the techniques in this paper are sufficient to specialize a näıve
string search algorithm to the Knuth-Morris-Pratt (KMP) algorithm [8],
which is a staple test case for supercompilation (Section 5). This example
motivates a technique called delimited aliasing which ensures static informa-
tion is properly retained during memoization.

A heavily commented MetaOCaml source file containing all nontrivial code of
this paper is available from the author’s homepage. However, note that some
parts of the code were shortened or omitted due to space limitations.

2 Background: Supercompilation

In this section we briefly review Sørensen et al.’s positive supercompiler [13]. We
use the contrived function from the introduction as a running example. When
asked to optimize the contrived function, the supercompiler starts a process
called driving on the body of the function, reducing it as much as possible:

let f xs ys = match xs with [] → length xs + length ys

| w::ws → length xs

in f zs (1::zs)

⇓
match zs with [] → length zs + length (1::zs)

| w::ws → length zs

where ⇓ denotes reduction – note that an open term is being reduced, with zs

free. Now the code is at a pattern-match that cannot be resolved statically. In
that case, driving replaces the scrutinee in each branch with the corresponding
pattern:

match zs with [] → length [] + length (1::[])

| w::ws → length (w::ws)

Note that zs is replaced by [] in the first branch but by w::ws in the second.

This substitution implements the introduction of assumptions mentioned in
the introduction: the supercompiler rewrites each branch with the knowledge
that the scrutinee must have a particular form in order for that branch to be
entered. Furthermore, both calls to length in the first branch benefit by intro-
ducing the assumption zs = []. In the original source program, the scrutinee
was xs, whereas the second call’s argument was ys; the β substitution during
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the reduction step (shown as ⇓ above) has exposed the sharing of the substruc-
ture zs in these two variables, so that the assumption introduced on (what used
to be) xs propagates to (what used to be) ys. Put another way:

– Assumptions are introduced by replacing the scrutinee with patterns.
– Assumptions are propagated by sharing substructures.

The main idea behind delimited assumptions is that we can imitate both of these
mechanisms by mutating metadata on a delayed variable.

After assumptions are introduced and propagated, the rewritten branch bod-
ies are driven separately; however, blindly doing so can lead to non-termination.
For example, driving the second branch by unrolling length gives

length (w::ws)

⇓
match w::ws with [] → 0

| _::ws’ → 1 + length ws’

⇓
1 + length ws

Note the match statement can be resolved statically, so no assumptions are in-
troduced. The supercompiler at this point drives each argument of + separately.
The left operand is in normal form, so it turns to the right operand, length ws.

length ws

⇓
match ws with [] → 0

| _::ws’ → 1 + length ws’

But the second branch is in a form already encountered before, so this unrolling
can go on forever.

To avoid infinite unrolling, the positive supercompiler lambda-lifts and memo-
izes each statically unresolvable match. After introducing assumptions, but before
driving each branch, the supercompiler places the whole match expression in a
new top-level function whose parameters are the free variables of the expression.

let rec newfun xs =

match xs with [] → 0

| _::ws’ → 1 + length ws’

When the supercompiler encounters the same match while driving the branches
of newfun, where two terms are the “same” iff lambda-lifting them gives α-
equivalent functions, then it emits a call to newfun instead of driving the same
term again. For example, driving the length ws’ in the second branch of the
match in newfun replaces it by newfun ws’.

Put together, the supercompiler compiles the contrived function into

let rec contrived zs =

match zs with [] → 0 + (1 + 0)

| w::ws → 1 + length ws

and length ws = match ws with [] → 0

| _::ws → 1 + length ws
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type (’s,’d) sd =

{ mutable dynamic : ’d code;

mutable static : ’s option; }

type (’s,’d) ps_cell =

| Nil

| Cons of (’s,’d) sd * (’s,’d) psl

and (’s,’d) psl =

((’s,’d) ps_cell, ’d list) sd

(∗unknown : ’d code → (’s,’d) sd∗)
let unknown x =

{ dynamic = x; static = None }

(∗forget : (’a,’b) sd → ’b code∗)
let forget x = x.dynamic

(∗ assuming eq : (’a, ’b) sd → ’a
→ (unit → ’c) → ’c ∗)

let assuming_eq x v thunk =

let saved = x.static in

try x.static <- Some v;

let ret = thunk () in

x.static <- saved; ret

with e → x.static <- saved;

raise e

(∗dfun : ((’a, ’b) sd → ’c code)
→ (’b → ’c) code∗)

let dfun f =

.<fun x → .~(f (unknown .<x>.))>.

(∗ match ls :
((’a,’b) ps cell,’b list) sd
→ (unit → ’c code)
→ ((’a,’b) sd → (’a,’b) psl
→ ’c code)

→ ’c code
∗)
let match_ls ls for_nil for_cons =

match ls.static with

| Some Nil → for_nil ()

| Some (Cons (x,xs)) →
for_cons x xs

| None →
.<match .~(forget ls) with

| [] → .~(assuming_eq ls Nil

for_nil)

| x::xs →
.~(let x = unknown .<x>.

and xs = unknown .<xs>.

in assuming_eq

ls (Cons (x,xs))

(fun () →
for_cons x xs))>.

Fig. 1: Data types and functions implementing delimited assumptions.

In general, driving stops when the term under consideration reaches either a
normal form or a memoized form. This heuristic is called α-invariant folding.
Stronger termination heuristics are possible and implemented usually as gener-
alization, but we will not deal with that aspect in this paper.

3 Delimited Assumptions

Driving follows the execution of its input program with three mechanisms: re-
duction of open terms, introduction of assumptions, and propagation of assump-
tions. As seen in the power example from the introduction, reduction of open
terms is handled very naturally with MSP, as delayed variables can be manipu-
lated like values and injected into generated code. Effectively, inserting brackets
and escapes to force evaluation under binders corresponds to implementing the
reduction part of driving. The trickier part is the handling of assumptions.

Figure 1 shows types and functions used to handle assumptions with MSP.
Whereas the power example directly manipulated raw code values of the form
.<x>., the delimited assumption technique uses static-dynamic values, of type
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sd. Here, “dynamic” means delayed by brackets, and “static” means not delayed.
The sd type carries a dynamic value .<x>. and a static description of x’s dynamic
value (i.e. of the value x will have when the generated code is run). The type of x’s
value is ’d, and the type of the static description is ’s. Static-dynamic values are
created by unknown, which attaches void static information to a dynamic value,
and cast back to a dynamic value with forget, which discards static information.
An example is seen in dfun, which generates a dynamic fun, wraps the parameter
in unknown, and passes that to a callback to generate the body.

Static knowledge is often partial. For example, we might know that a dynamic
list xs must be a cons cell x::xs’ but not the value of x or whether xs’ is also
a cons cell. We need to mix in sd throughout data structures to represent such
partial knowledge, which for the list type gives the partially static list type, psl.
The ps_cell type encodes one cell worth of static information: empty or not,
and if nonempty, the static-dynamic representations of the head and tail. The
psl type is a static-dynamic type whose dynamic component is a list and whose
static component is ps_cell.

The static information is manipulated during a call to match_ls, which looks
deliberately like a match on a list:

match_ls xs (fun () → .<"empty">.) (fun x xs’ → .<"nonempty">)

Conceptually, this function is a dynamic match whose branches are generated
by the two callbacks, but it avoids generating a match at all if the static infor-
mation on xs tells us the outcome, e.g. whether the list is empty or a cons cell.
This optimization is implemented in the first half of match_ls – if static infor-
mation is available, match_ls calls only one of the callbacks. However, if static
information is unavailable, match_ls generates a dynamic match, then wraps pat-
tern variables (if any) in sd and invokes the callbacks. Moreover, the scrutinee’s
static information is destructively updated to reflect which branch was taken:
to Nil in the [] branch, and to Cons in the x::xs branch. This update is undone
when the callback returns, so the assumption’s lifetime is delimited by the match

branch in which it was introduced – hence the name delimited assumption. This
modification and restoration of static information is done in assuming_eq.

Note that the update by assuming_eq is done by mutation. By destructively
updating static information, all copies of the data see the update. For example,
the contrived function in the introduction can be staged as follows.

let rec gen_contrived () = dfun (fun zs →
let f xs ys = match_ls xs

(fun () → .<.~(gen_len xs) + .~(gen_len ys)>.)

(fun _ ws → .<(∗ discussed later ∗)>.)
in f zs (cons (known 1 .<1>.) zs)))

and gen_len ws = match_ls ws (fun () → .<0>.)

(fun _ ws → .<1 + .~(gen_len ws)>.)

Basically, we just replaced fun by dfun and match by match_ls. The dfun wraps
the generated parameter in void static information, so zs.static = None and
zs.dynamic = .<v_zs>. for some (dynamically bound) variable. The cons oper-
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ator is just :: for partially static lists, and known creates sd with the specified
static information (definitions omitted), so when f is entered, we have1

zs = { dynamic = .<v_zs>.; static = None }

xs == zs (∗ NB: physical equality ∗)
ys = { dynamic = .<1::v_zs>.; static = Cons (1, zs) }

representing the fact that we have no knowledge of the dynamic value of zs while
we do know xs = zs and ys = 1::zs. Most importantly, ys shares the zs node
with xs, so that any changes to zs are visible from both xs and ys. When the
match_ls in f introduces the assumption xs = [] by modifying xs, that change
also happens on zs (because they’re physically equal), and this change is visible
from ys. After introducing the assumption, the data look like

zs = { dynamic = .<zs’>.; static = Some Nil }

xs == zs (∗ NB: physical equality ∗)
ys = { dynamic = .<1::zs’>.; static = Cons (1, zs) }

representing the updated, local knowledge zs = [] and xs = [] and ys = [1],
as desired. Subsequent match_ls on ys can avoid generating any dynamic match

using this static information.
Overall, the generated code is

.<fun zs → match zs with [] → 0 + (1 + 0)

| x::xs → (∗ discussed later ∗)>.

Both calls to length have been completely optimized away. This would not have
happened if the assumption about xs didn’t propagate to ys.

Thus, the techniques in this section suffice to imitate driving, including open-
term reduction, introduction of assumptions, and propagation to all copies. We
should note that not all open-term reductions are easily simulated this way. For
example, in the f function above, (+) is hard-coded inside brackets, so it’s not
optimized away, whereas an automated supercompiler might reduce it as well.
For this example, if we really need to optimize that addition, we can still do so
by making the returned integer partially static. Such a workaround may or may
not be so obvious in general; however, experience with more traditional, PE-like
uses of MSP suggests that this is not a significant issue.

4 Ensuring Termination

The previous section deliberately ignored a part of contrived that involves a
termination issue. In this section, we explain how to simulate α-invariant folding
to ensure termination. The most obvious way to fill in the expression marked
(∗discussed later ∗) in the staged code above is to put gen_len xs there, following
the structure of the original, unstaged code. Alas, this call never finishes. The
input xs is not completely statically known, so gen_len eventually runs out of

1 Pedantically, the first argument of the Cons in ys.static should be another sd, but
we simply write the static representation 1 for the sake of conciseness.
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(∗ State monad. ∗)
type (’a,’st) monad = ’st → (’a * ’st)

(∗ memoize : ’key
→ (’a code, (’key,’a code) table) monad
→ (’a code → (’b code, (’key,’a code) table) monad)
→ (’b code, (’key,’a code) table) monad ∗)

let memoize key fcn call =

bind get (fun table →
match lookup key table with

| Some f → call f

| None → bind get (fun table →
ret .<let rec f = .~(run_monad fcn (add key .<f>. table))

in .~(run_monad (call .<f>.) table)>.))

(∗ Fix the table type for brevity. ∗)
type ’a table_monad =

(’a, ((int, int) psl, (int list → int) code) table) monad

(∗ gen contrived : unit → (int list → int) code table monad ∗)
let rec gen_contrived () = dfun (fun zs →
let f xs ys = match_ls xs

(fun () → gen_len xs +! gen_len ys)

(fun _ ws → gen_len xs)

in f zs (cons (known 1 .<1>.) zs))

(∗ gen len : (int,int) psl → (int code) table monad ∗)
and gen_len ws =

memoize (freeze ws)

(dfun (fun ws’ → alias ws (forget ws’) (fun () →
match_ls ws

(fun () → ret .<0>.)

(fun _ ws → ret .<1>. +! gen_len ws))))

(fun f → return .<.~f .~(forget ws)>.)

Fig. 2: Staged contrived function with memoization.

static information to act on. This means the match_ls in gen_len generates a
dynamic match, whose cons-branch is generated by creating a fresh ws, again
with no static information. This is then passed recursively to gen_len, which
repeats the same process.

This situation is analogous to driving without folding. With match_ls, we
are forcing the evaluation of branch bodies of statically unresolvable pattern-
matches by making deeper and deeper assumptions about the input list, but
there is no bound on the depth of this assumption. This leads to non-termination,
because unlike the driving process described in Section 2, the code shown here
doesn’t generate a (recursive) function that can be reused later when an identi-
cal match_ls is reached. Generating and memoizing those functions is an integral
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part of the positive supercompiler’s termination heuristic, and we need to sim-
ulate this in MSP as well.

Figure 2 shows a terminating generator which memoizes the pattern-match
in gen_len, keyed with the scrutinee (since that’s the only free variable in the
match statement). Following Swadi et al. [15], we thread the memo table by
a state monad; ret, bind, and get are the usual state monad operations, and
match_ls and dfun are updated to work inside the monad. Similarly, (+!) gen-
erates a dynamic (+) inside the monad. Other than that, the only change is
the addition of a call to memoize, which takes a key, a monadic action fcn that
generates a function, and call which maps a dynamic function to some code
invoking that function. If key is not in the table, memoize dynamically binds the
function returned by fcn and generates a call to it with call. The fcn is run on
a state extended with the mapping key 7→ .<f>., where f is the newly generated
function. If memoize is invoked again with the same key while fcn generates the
body of f, then only call is invoked, without generating a new function. Thus,
the code in Figure 2 terminates and generates

.<fun zs → match zs with [] → 0 + (1 + 0)

| w::ws → 1 +

(let rec len ws =

match ws with [] → 0

| _::ws’ → 1 + len ws’

in len ws)>.

This memoization scheme has several subtleties, two of which are explained
here, while the last one is explained in the next section using the more so-
phisticated KMP example. The first subtlety is that memoization keys must be
deep-copied before inserting into the table, because subsequent introduction of
assumptions can change their static information. The freeze function in Figure 2
performs this deep copy. The second subtlety is that key comparison cannot be
simple equality. For example, if gen_len is called on the partially static datum

xs = { dynamic = .<v_xs>.; static = None }

for some dynamic variable v_xs bound on the caller’s side, then a new entry is
created in the memo table with xs as the key (assuming it’s not already there).
However, the second branch of match_ls calls gen_len on

ws = { dynamic = .<v_ws>.; static = None }

where v_ws is the symbol freshly generated by match_ls. If these keys were com-
pared with (=), then the lookup would fail, resulting in non-termination.

This shows that key comparison should ignore differences in names of dy-
namic variables. However, it should not ignore differences in sharing. Although
not an issue for gen_len, if a function with two arguments xs and ys introduces
assumptions on xs and then pattern-match on ys, then a memo entry created
when xs and ys are physically equal must not be used at a call site where they
are not equal. In general, the keys must be compared under DAG isomorphism
– they are equal iff they have the same shape (same number of cons cells with
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the same heads, a.k.a. car’s, linked together in the same manner), but not the
same names on the leaves where static information is None.

This keying discipline is not so mysterious if we consider the connection to
α-invariant folding in positive supercompilation. A static-dynamic datum with
void static information is like a variable in the object term of supercompilation,
whereas a static-dynamic datum with, say Cons(1,xs) as static information is like
an open object term 1::xs in supercompilation. The function generated during
memoization is the lambda-lifting of the match that is memoized, and the memo
keys are the collection of all partially static data manipulated inside that match.
Hence, if a match statement on a particular source location is executed multiple
times, each execution instance is uniquely identified by the key. The lambda-
lifted function f is reusable precisely when supercompiling a term whose lambda-
lifting is α-equivalent to f, which is necessary and sufficient for the lookup key
to be graph-isomorphic to the key found in the table.

5 Case Study: KMP

In this section, we show that our MSP techniques suffice to pass the “KMP
test” for supercompilation [13]. In this test case, we explain the final subtlety in
implementing α-invariant folding with memoization, which motivates one final
technique which we call delimited aliasing.

Figure 3a shows a function search that tests if a pattern string p occurs in a
subject string s.2 It checks if p is a prefix of s by character-wise comparison, and
upon a mismatch, drops the head of s and starts over. If p,s have lengths m,n,
respectively, this takes O(mn) comparisons. The objective is, given a concrete
pattern, to generate the efficient KMP algorithm in Figure 3c which performs
only O(m+ n) comparisons (not counting generation cost).

Specializing search to a fixed pattern "aab" with PE gives more or less Fig-
ure 3b, where the []-cases of matches are omitted due to space limitations. The
matches on the pattern are statically resolved, but the subject is still rewound
to the beginning upon a mismatch, resulting in O(mn) comparisons. We can
do better. If the third character mismatched, the subject must start with "aa",
so we know the first comparison of the next round will return true. We can
therefore skip that comparison. Eliminating such redundant comparisons gives
the KMP algorithm in Figure 3c. Note the failing branch of the comparison in
kmp_b jumps to kmp_ab instead of kmp_aab.

This optimization happens by noting static information learned about os

due to pattern matches and comparisons on ss. It’s by following the match ss

and if s = ’a’ that we learn (or assume) that the subject starts with "aa",
and os is never inspected; nonetheless, this information should propagate to
os and be used to skip (or statically perform) redundant comparisons. This is
just what positive supercompilation does, as do our MSP techniques. Figure 3d
demonstrates a staged version of the matcher. It is fairly straightforward, with

2 Strings are represented as char list rather than string, but for brevity we write
literals "like this" where convenient.
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let rec search p s = loop p s p s

and loop pp ss op os =

match pp with

| [] → true

| p::pp’ →
match ss with

| [] → false

| s::ss’ →
if s = p

then loop pp’ ss’ op os

else next op os

and next op = function

| [] → false

| s::ss → loop op ss op ss

(∗ Mnemonics for variable names:
p, pp −− Pattern to search for
s, ss −− Subject to search over
op −− Original Pattern
os −− Original String ∗)

(a) Generic version.

let rec naive_aab ss = aab ss ss

and aab ss os =

match ss with

| x::xs →
if x = ’a’ then ab xs os

else next os

and ab ss os =

match ss with

| x::xs →
if x = ’a’ then b xs os

else next os

and b ss os =

match ss with

| x::xs →
if x = ’b’ then true

else next os

and next = function

| _::xs → aab xs xs

(b) Näıvely specialized to “aab”.

let rec kmp_aab = function

| x::xs →
if x = ’a’ then kmp_ab xs

else kmp_aab xs

and kmp_ab = function

| x::xs →
if x = ’a’ then kmp_b xs

else kmp_aab xs

and kmp_b = function

| x::xs →
if x = ’b’ then true

else if x = ’a’ then kmp_b xs

else kmp_ab xs

(c) Hand-written KMP for “aab” (split in two columns).

let rec loop pp ss op os =

match pp with

| p::pp’ →
memoize (freeze (pp,ss,op,os))

(dfun (fun ss’ → alias ss (forget ss’) (fun () →
match_ls ss (fun () → ret .<false>.)

(fun s ss →
ifeq s (known p .<p>.)

(fun () → loop pp’ ss op os)

(fun () → next op os)))))

(fun f → ret .<.~f .~(forget ss)>.)

and next op os () = match_ls os (fun () → ret .<false>.)

(fun s ss → loop op ss op ss ())

(d) Staged string search with memoization (one column).

Fig. 3: String matcher. Suffixes in specializations indicate remaining pattern.
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match replaced by match_ls and if s = c replaced by ifeq, a combinator similar
to match_ls but generating equality tests with constants.

The one aspect in which this example differs significantly from contrived is
the use of the combinator

alias : (’a,’b) sd → ’b code → (unit → (’c,’d) monad) → (’c,’d) monad

which is almost the same as assuming_eq but updates the dynamic value instead
of the static information. For example, if we reach the memoize in Figure 3d when

pp = "aab"

op = "aab"

ss = { dynamic = .<v_ss>.; static = None }

os = { dynamic = .<v_os>.; static = Some (’a’, ss) }

then memoize calls back the generator of the memoized body (i.e. the part that
starts out with dfun), and the dfun creates a new static-dynamic value

ss’ = { dynamic = .<v_ss’>.; static = None }

Then alias ss (forget ss’) modifies the dynamic variable associated to ss to
make it an alias for ss’, hence

ss = { dynamic = .<v_ss’>.; static = None }

All other static-dynamic values remain unchanged. Just like assuming_eq, this
mutation is undone when the thunk (the last argument to alias) returns.

The reason we need this is because, by making v_ss an argument to the
function generated by memoize, we’re effectively renaming the dynamic variable
v_ss. The whole point of generating a function is to have its body process the
parameter v_ss’ instead of v_ss, so that this body becomes reusable. However,
in the case of KMP, the body must also process os, which would still refer to
v_ss instead of v_ss’; mutating the ss structure ensures that both os and ss are
updated to point to v_ss’.

This scheme once again corresponds to α-invariant folding, where free vari-
ables are captured and consistently renamed. Mutating the dynamic variables
on leaf nodes of static-dynamic values corresponds to renaming the dynamic
variable associated with that value across the board.

It should be noted that to be faithful to the α-invariant folding heuristic,
alias should only be used on leaf nodes, whose static information is None. This
ensures maximum retention of static information, because alias’ed nodes must
have void static information (since the new dynamic variables have no static
information). Thus, a combinator would be helpful that traverses static-dynamic
data and collects such nodes, generating a function with as many arguments as
needed. This will be fairly tricky to type in (Meta)OCaml, since we need to
traverse arbitrary data structures while managing a heterogeneous collection
of dynamic variables to eliminate duplicates. We leave the pursuit of such a
combinator for another occasion.

With these mechanisms in hand, the generator in Figure 3d produces more
or less the KMP code in Figure 3c, with two minor differences. Firstly, as posi-
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tive supercompilation tracks equalities but not disequalities, we have redundant
comparisons of the form

if x = ’a’ then ...

else if x = ’a’ then ... else ...

This can be eliminated by maintaining richer static information. For example,
a dynamic value can be tagged with the set of values it can have, rather than a
single value. The other difference is that the generated code nests let recs like

let rec f1 =

let rec f2 = bar

in baz

in foo

instead of having a single, flat let rec. Hence, only functions generated in the
direct ancestors of a memoize call can be reused, which is both a good safety pre-
caution and a limitation. Reusing functions from a different conditional branch
runs the risk of invoking code that relies on assumptions valid only in that
branch, but if used properly it can reduce generated code size. Current MetaO-
Caml provides no way to generate let rec with a variable number of bindings,
but a new primitive allowing that is expected in a future release.3 It would be
interesting to see if they enable notable improvements.

6 Related Work

Supercompilation was devised by Turchin for Refal [19] and later adapted to
more standard functional languages by Glück and Klimov [3]. Sørensen et al.
placed this on the same theoretical footing as PE, deforestation, and generalized
partial computation (GPC), and showed that supercompilation subsumes PE
and deforestation [13]. We have drawn heavily from this work: [13] effectively
identified all the key ingredients for supercompilation, in terms that are trans-
ferable to MSP. Supercompilation has been extended by distillation [4], but it
remains unclear what the differences are, in terms that can be mapped to MSP.

GPC [2,18] is an extension of PE that uses a theorem prover to manage static
information. While the use of a theorem prover makes it harder to predict how it
performs on any given task, we remark that the delimited assumption technique
can be used to simulate GPC as well, by simply taking the static information to
be variables in the theorem prover. Compared to GPC, however, our techniques
perform the very stylized information propagation of supercompilation, which
behaves more predictably than if the bookkeeping is delegated to a black-box
solver. In this way, our techniques might be useful to lighten the load on the
prover.

MSP was originally a notation for PE [10] but was later developed into a
programming language feature by Taha and Sheard [17]. Its main advantages are
the existence of a well-behaved metatheory [5] and type systems that make strong

3 Private communication with the maintainer.
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guarantees about generated code [6, 16, 20]. MetaOCaml statically prevents the
construction of ill-formed or ill-typed code values, with the one exception that
effects can cause scope extrusion, where a dynamic variable is floated out of its
scope. Much effort has been expended on catching this problem early, resulting in
static type systems [6,20] and dynamic checks [7], the latter of which MetaOCaml
already implements. The present paper adds to the motivation for these efforts
by offering a new, important use for effectful MSP.

Partially static data types were known in PE circles starting perhaps with
Mogensen [9], but Sheard and Diatchki [11] seem to be the first to use it as
a staging technique. However, they duplicated constructors instead of pairing
dynamic values with optional static information, which made their code generally
more verbose than ours. The pairing technique itself appears in earlier PE works,
for example [14]. The observation that mutating components of these pairs can
simulate supercompilation appears to be new.

7 Conclusion

We showed that MSP can achieve a good deal of the effects of positive supercom-
pilation. The central idea is to update the static portion of partially static data
structures upon entering a dynamic conditional, and to do this with mutation.
This arrangement ensures that the assumption is propagated to all copies of the
data, allowing smart handling of nonlinear code. As an auxiliary technique, a
fairly nonstandard memoization scheme may be required to ensure termination,
namely comparing partially static data with graph isomorphism. Taken together,
these techniques can specialize a näıve string matcher to a KMP matcher.

The techniques in this paper should be thought of as low-level groundwork for
realizing supercompilation by staging. It is fairly technical and we can’t expect
most MetaOCaml programmers to be apply this easily, without making mistakes.
A well-designed combinator library should be able to alleviate this problem.
An important goal for such a library is to offer a richer memoize combinator
that collects leaf nodes from its key and generates a function with as many
parameters as are needed, performing delimited aliasing as well. This would
make the techniques much more straightforward to understand.

Finally, this paper’s purpose is to demonstrate techniques that are useful in
expressing supercompilation-like optimizations in MSP, and not to lay down a
formal analysis. We did not attempt to define precisely what class of programs
can be supercompiled, but as mentioned earlier, not all driving trees are naturally
expressed with MSP. It would be interesting to see what kinds of driving trees
are beyond MSP in its current form (if any).
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code duplication when staging memoized functions. In: PEPM. pp. 160–169. ACM
(2006)

16. Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL. pp. 26–37. ACM
(2003)

17. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
PEPM. pp. 203–217. ACM (1997)

18. Takano, A.: Generalized partial computation using disunification to solve con-
straints. In: CTRS. pp. 424–428 (1993)

19. Turchin, V.: A supercompiler system based on the language Refal. SIGPLAN No-
tices 14(2), 46–54 (1979)

20. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java
multi-stage programming using weak separability. In: PLDI (2010)

http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps‎

	Introduction
	Contributions

	Background: Supercompilation
	Delimited Assumptions
	Ensuring Termination
	Case Study: KMP
	Related Work
	Conclusion

