
Extracting Data Parallel Computations
from Distilled Programs

Venkatesh Kannan and G. W. Hamilton

School of Computing, Dublin City University, Ireland
{vkannan, hamilton}@computing.dcu.ie

Abstract. To effectively utilise the parallel computing power of the het-
erogeneous architecture in hardware, potential parallelism in programs
needs to be extracted and characterised. The extraction of parallel com-
putations in a given program, though challenging and error-prone in
practice, should be automated for both efficiency and accuracy of the
parallelisation process.
In this paper, we present our initial work to automate the identification
of data parallel computations in a given functional program for their
execution on heterogeneous hardware with multi-core CPUs and GPUs.
To achieve this, we use a program transformation technique called dis-
tillation [11, 12], and a data type transformation technique used in Au-
toPar [10] to transform an arbitrary program to operate over flat data
types. We then choose a set of skeletons that are widely used for parallel
program development [8,9,13,14], and use their characteristics to identify
and extract instances of the skeletons from the transformed program that
operates over flat data types. Following this, we replace these skeleton
instances with their equivalent operations in the Accelerate library [4],
which provides efficient OpenCL implementations for their execution on
multi-core CPUs and GPUs.
We are presently working on formally specifying our parallelisation pro-
cess, before comprehensively evaluating the parallel programs produced
by our approach against expert hand-written parallel programs.

1 Introduction

The architecture of today’s computing systems is made up of a heterogeneous
collection of parallel processing units. The most common parallel processing
units found are multi-core CPUs and many-core GPUs. CPUs are better suited
to efficiently executing latency-critical programs that may have dynamic control-
flow. GPUs, on the other hand, are designed for efficient execution of throughput-
critical programs that have minimal control-flow divergence and a large number
of identical threads.

In this setting, the development of parallel programs is vital to harness the
computing power available in hardware. When it comes to parallelisation of
programs and their execution, there are some tasks to be done either by the
programmer, or by the implementor of the parallel programming system [8].

Extracting Data Parallel Computations from Distilled Programs 111

– Problem decomposition: Identification of computations in a program that
can be executed in parallel.

– Distribution: A mapping from computations that may be executed in parallel
to the available processing units.

– Code and data sharing : Decisions on how to spread the code and data for
the computations to be executed in parallel across the chosen architecture,
aiming at a performance improvement over a sequential execution.

– Communication and synchronisation: A mechanism that describes resource
sharing and control.

Parallelism in a program can be implicit or explicit depending on which of the
above tasks are specified by the programmer, and which are specified by the
implementor in the programming system [8]. A completely explicit parallel pro-
gram will have all four of the above tasks specified by the programmer, while a
completely implicit parallel program will have all of them implemented in the
parallel programming system.

Parallelisation of a given program, on the other hand, can be either manual
or automated. In manual parallelisation, given the existing complexity of im-
plementing an algorithm from its design, manually identifying and expressing
parallel code can make development tedious and error-prone. Alternatively, au-
tomated program parallelisation involves identifying computations in a program
that exhibit parallelism through program analysis. Such parallel computations
can then be extracted and expressed explicitly using program transformation
techniques. However, in practice, such automated parallelisation can be quite
difficult for an arbitrary given program, especially while targeting its execution
on a heterogeneous parallel architecture.

In this paper, we present our initial work that uses a program transformation
technique called distillation [11,12], and extracts potential parallel computations
from distilled programs. This automates the task of problem decomposition, thus
making potential parallelism in a given program more obvious. For the purpose of
this paper, a detailed description of distillation is not required; it is sufficient to
know that the distilled expressions are in a specialised form called distilled form.
To identify and extract parallel computations, we choose a set of skeletons, which
are algorithmic forms that are common to a wide range of parallelisable problems
[8]. The extracted parallel computations are then scheduled for execution on
CPUs and GPUs based on their characteristics.

The remainder of this paper is structured as follows. In Section 2, we define
the syntax and semantics of the higher-order functional language which we use
in the parallelisation process. In Section 3, we elaborate on the characteristics of
parallel computations that we use to decide their scheduling on a CPU or a GPU
for execution. Also presented in this section are the functional definitions of the
chosen skeletons to encompass these characteristics. In Section 4, we present our
method to transform data types of a given program into a form that makes it
amenable to parallelisation, and our parallelisation technique. In Section 5, we
outline the course planned to complete this work. In Section 6, we summarise
by considering related work in this context.

112 Venkatesh Kannan, G. W. Hamilton

2 Language

In this work, we focus on program parallelisation applied to functional languages.
This is primarily due to certain advantages that functional languages have. The
lack of side-effects in pure functional languages is a major benefit, which makes
them easier to analyse, reason about, and manipulate using program transfor-
mation techniques. The lack of side-effects also allows parallel evaluation of in-
dependent sub-expressions in a program. The higher-order functional language
used in this work is presented in Definition 1.

Definition 1 (Language Syntax).

e ::= x Variable
| c e1 . . . ek Constructor Application
| λx.e λ−Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 → e1 | . . . | pk → ek Case Expression
| let x = e0 in e1 Let Expression
| e0 where f1 = e1, . . . , fn = en Local Function Definitions

p ::= c x1 . . . xk Pattern

A program in this higher-order language is an expression e, which can be a
variable, constructor application, λ−abstraction, function call, application, case,
let, or where. Any variables introduced in the λ−abstraction, case patterns or
let are bound, while all other variables are free. Each constructor has a fixed
arity. In an expression c e1 . . . ek, k must be equal to the arity of the constructor
c. The patterns in case branches may not be nested. Techniques exist to trans-
form nested patterns into equivalent non-nested versions [1,19]. No variable may
appear more than once within a pattern and it is also assumed that all patterns
are non-overlapping and exhaustive.

3 Parallel Computations and Skeletons

To be able to identify potential parallelism in a given functional program, we
classify parallel computations into two categories - data parallel and task parallel
computations. Since GPUs are capable of efficiently executing a large number of
identical threads that have minimal control-flow divergence, data parallel com-
putations are better suited for execution on GPUs. However, the cost of transfer-
ring data between the system main memory and the GPU memory is non-trivial.
Hence, given enough computational work per unit data, data parallel computa-
tions that operate on significantly large datasets will have a larger performance
gain when executed on GPUs. All other computations (sequential, data parallel

Extracting Data Parallel Computations from Distilled Programs 113

computations operating on smaller datasets, and task parallel computations) are
scheduled for execution on CPUs.

Data parallelism can be further classified as flat and nested data parallelism.
Flat data parallelism executes more efficiently on GPUs, as opposed to nested
data parallelism. This is because flat data parallelism is closer to the Single
Program Multiple Data (SPMD) model that the GPU hardware is based on.
Also, the control-flow is more regular and less divergent in the case of flat data
parallelism allowing high throughput during execution. Hence, our objective is
to

1. transform any given program to operate over flat data types, and
2. identify all potential flat data parallel computations in the transformed pro-

gram.

We represent flat data parallel computations using skeletons, which are al-
gorithmic forms that are common to a wide range of parallelisable problems.
Our choice of skeletons is based on Blelloch’s work on a vector-model for data
parallel computations [2] that includes a study of primitive operations required
to implement data parallel computations. To encompass the characteristics of
data parallelism, we choose three skeletons − map, reduce and zipWith. These
skeletons are also widely used in the development of programs that have data
parallel computations [8, 9, 13,14].

The three skeletons defined over lists are presented in Definition 2.

Definition 2 (Skeletons Defined over Lists).

map f xs
where
map = λf.λxs.case xs of

Nil → Nil
Cons x′ xs′ → Cons (f x′) (map f xs′)

reduce v f xs
where
reduce = λv.λf.λxs.case xs of

Nil → v
Cons x′ xs′ → reduce (f x′ v) f xs′

zipWith f xs ys
where
zipWith = λf.λxs.λys.

case xs of
Nil → Nil
Cons x′ xs′ → case ys of

Nil → Nil
Cons y′ ys′ → Cons (f x′ y′)

(zipWith f xs′ ys′)

114 Venkatesh Kannan, G. W. Hamilton

– map : applies a function f to each element in a list xs, and produces a list
of the same size as that of the input.

– reduce : collapses a list xs into a single value using an associative binary
operator f , with a unit value v, by accumulating the reduction value.

– zipWith : combines two lists xs and ys point-wise using a binary operator
f on the corresponding elements.

4 Program Parallelisation

Before we apply our parallelisation technique to identify potential data parallel
computations in a program, we need to identify if the program may contain data
parallelism. In this context, we observe that only some of the data types over
which a program is defined are suited to data parallelism such as lists, trees or
arrays. Hence, we allow the developer to specify a set of parallelisable types, γ,
to which our parallelisation technique can be applied.

In our parallelisation approach, we identify instances of the three list skele-
tons in the result of applying distillation to a given program. To facilitate this,
the parallelisable types within a program need to be converted to flat lists. Hence,
it is necessary to transform the program using distillation to operate over these
flat lists in order to identify potential flat data parallel computations using our
skeletons. This is explained in Section 4.1.

Upon transformation of the original program f to operate over lists, we obtain
the transformed program flist. Following this, we use the characteristics of the
skeletons that are presented in Section 3 to identify and extract their instances
from flist. This is explained in Section 4.2.

Our approach to execute the identified skeletons efficiently on CPU or GPU
is explained in Section 4.4.

4.1 Data Type Transformation

We use two sets of functions to transform a program f with input data of type
Tin and output data of type Tout, into a semantically equivalent one, flist, de-
fined on list data types.

For input type Tin ∈ γ, and output type Tout ∈ γ,

– flattenin and flattenout : these functions transform Tin and Tout into lists
of their component types T ′

in and T ′
out.

– unflattenin and unflattenout : these functions transform lists of component
types T ′

in and T ′
out back to their corresponding original data types Tin and

Tout.

The type signatures of these functions are presented in Definition 3. These func-
tions use Dever’s work on data partitioning [10] that defines functions flatten
and unflatten to provide transformations between an instance of type T and a
list of its component types T ′.

Extracting Data Parallel Computations from Distilled Programs 115

Definition 3 (Signatures of Type Transformation Functions).

flattenin :: Tin → (List T ′
in)

unflattenin :: (List T ′
in)→ Tin

flattenout :: Tout → (List T ′
out)

unflattenout :: (List T ′
out)→ Tout

It is to be noted that if Tout ∈ γ, as in the case of map and zipWith skeletons,
then flattenout transforms Tout into List T ′

out. If Tout /∈ γ, as in the case of
reduce skeleton, then the output of flattenout is the original output data type
Tout. The function unflattenout also works in a similar fashion.

As illustrated in Fig. 1, a composition of unflattenin, the original program
f , and flattenout yields a program that is defined over list data types.

Definition 3 (Signatures of Type Transformation Functions).

flattenin :: Tin → (List T ′
in)

unflattenin :: (List T ′
in)→ Tin

flattenout :: Tout → (List T ′
out)

unflattenout :: (List T ′
out)→ Tout

It is to be noted that if Tout ∈ γ, as in the case of map and zipWith skeletons,
then flattenout transforms Tout into List T ′

out. If Tout /∈ γ, as in the case of
reduce skeleton, then the output of flattenout is the original output data type
Tout. The function unflattenout also works in a similar fashion.

As illustrated in Fig. 1, a composition of unflattenin, the original program
f , and flattenout yields a program that is defined over list data types.

Input Data Type

Transformation�
�

�
�List T ′

in
unflattenin−−−−−−−−→ Tin

-

Original Program f�� ��Tin
f−→ Tout

-

Output Data Type

Transformation�
�

�
�Tout

flattenout−−−−−−−→ List T ′
out

'

&

$

%

?

distill

Transformed Program flist�
�

�
�List T ′

in
flist−−−→ List T ′

out

?

Identify instances of skeletonlist

Efficient Program fsk defined

using skeletonlist applications�
�

�
�List T ′

in
fsk−−→ List T ′

out

Fig. 1. Transformation of Original Program
Fig. 1. Transformation of Original Program

116 Venkatesh Kannan, G. W. Hamilton

4.2 Parallelisation Technique

Fig. 1 also illustrates our parallelisation technique. As a first step, we distill the
composition of unflattenin, f and flattenout. This yields a program flist, which
is semantically equivalent to f and is defined on list data types.

The definition of flist is in the distilled form, which is presented in Definition
4. In an expression in the distilled form, deρ, resulting from distillation, ρ denotes
the set of variables that have been introduced in let expressions, and cannot
therefore appear as a selector in a case expression. As a result of this, expressions
in distilled form do not create intermediate data structures.

Definition 4 (Syntax of Distilled Form).

deρ ::= x
| c deρ1 . . . de

ρ
k

| λx.deρ

| f
| deρ x
| case x of p1 → deρ1 | . . . | pk → deρk where x /∈ ρ
| let x = deρ0 in de

(ρ ∪ {x})
1

| f x1 . . . xn where f = λx1 . . . λxn.de
ρ

Additionally, we have found that the three skeletons described in Section 3
can be associated with the following three characteristics of recursive functions
that a given program in distilled form may have.

– Case 1 : A recursive function has one decreasing parameter, which is of
the same type as the result. This would indicate the presence of a map-like
computation.

– Case 2 : A recursive function has one decreasing parameter, which is of a
different type to the result. This would indicate the presence of a reduce-like
computation.

– Case 3 : A recursive function has more than one decreasing parameter. This
would indicate the presence of a zipWith-like computation.

In addition to problems that fit one of the three cases mentioned above, we
may also have problems with any combination of these cases indicating the need
for a composition of skeletons.

Using these characteristics of sub-expressions, we identify instances of the
skeletons in the transformed program flist. As a result, instances of the skeletons
embedded in flist are extracted. This yields the program fsk that is defined using
applications of the skeletons skeletonlist.

4.3 An Example : Find Maximum

The parallelisation of a program, findMax, to find the largest positive element
in a list using the proposed parallelisation approach, is presented in Example 1.

Extracting Data Parallel Computations from Distilled Programs 117

The input program to the transformation process is shown in expression (1).
Here xs is the list to be parsed through to find the largest element. The definition
consists of two functions: bigger to find the larger of two given elements, and
findMax to find the largest positive element in a given list.

The distillation of expression (1), without identifying instances of list skele-
tons, produces the distilled form of findMax presented in expression (2).

Expression (3) is the result of identifying list skeletons in expression (2) using
our parallelisation technique. Here, f is the reduction operation that distillation
has extracted in a definition that uses an application of the reduce skeleton.

Example 1 (Find Maximum in List).

Expression (1) : Original Program

findMax xs 0
where
findMax = λxs.λv.case xs of

Nil → v
Cons x′ xs′ → bigger x′ (findMax xs′ v)

bigger = λx.λv.case (x > v) of
True → x
False → v

Expression (2) : Distilled Program

findMax xs 0
where
findMax = λxs.λv.case xs of

Nil → v
Cons x′ xs′ → let v′ = (case (x′ > v) of

True → x′

False → v)
in findMax xs′ v′

Expression (3) : Distilled Program with Skeletons Identified

findMax xs 0
where
findMax = λxs.λv.let f = λx′.λv′.(case (x′ > v′) of

True → x′

False → v′)
in reduce v f xs

For parallel evaluation of the application of reduce skeleton, it is required
that the reduction operator be associative. As a result, we have to prove the asso-
ciativity of a reduction operator, f , used by the extracted reduce skeleton. This

118 Venkatesh Kannan, G. W. Hamilton

can be achieved by distilling the two expressions f (f x y) z and f x (f y z) us-
ing the definition of f . If the distilled forms of both expressions are syntactically
equal, then f is associative.

4.4 Execution of Data Parallel Computations

The skeleton applications identified in the distilled program represent data paral-
lel computations. Skeleton applications that work on smaller datasets are sched-
uled for execution on CPU, while those that are computation intensive and work
on significantly larger datasets are scheduled for execution on GPU. This is due
to the potentially larger overhead involved in shipping the data between the sys-
tem main memory and the GPU memory. To allow the execution of the skeleton
applications on CPUs and GPUs alike, we make use of the Accelerate library of
operations [4].

Accelerate Library. This is a domain-specific purely functional high-level lan-
guage embedded in Haskell. The library contains efficient data parallel imple-
mentations for many operations including the chosen skeletons : map, reduce
and zipWith. We replace the identified skeleton applications with calls to the
corresponding Accelerate library operations, which have efficient OpenCL im-
plementations. This allows their scheduling and execution on CPUs and GPUs,
among other OpenCL-compatible processing units.

The Accelerate library operations are defined over their custom Array sh e
data type. Here, sh is a type variable that represents the shape of the Accelerate
array. It is implemented as a heterogeneous snoc-list where each element in the
list is an integer to denote the size of that dimension. A scalar valued array is
represented in sh by Z, which acts as both the type and value constructor. A
dimension can be added to the array by appending the size of that dimension to
sh. The type variable e represents the data type of the elements stored in the
Accelerate array.

To execute the data parallel computations in fsk on a CPU or GPU, we re-
place each application of skeletonlist with a call to the corresponding Accelerate
library operation skeletonacc. The resulting skeletonacc calls operate over the
Accelerate array types; inputs of type Array shin T sk

′
in , and output of type

Array shout T
sk′
out . Consequently, we need to transform the input and output

data of the original program f to and from the Accelerate array type.
These transformations are illustrated in Fig. 2 and Fig. 3 as “Input Data

Transformation” and “Output Data Transformation”, and are explained below:

1. Input Data Transformation
– flattenin : This function transforms the input data for f of type Tin ∈ γ

into List T ′
in for input to fsk.

– Each skeleton application skeletonlist in fsk operates over input data of
type T skin . We replace these skeletonlist applications with calls to cor-
responding skeletonacc operations that operate over Accelerate array
types.

Extracting Data Parallel Computations from Distilled Programs 119

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

Input Data

Transformation�� ��Tin
flattenin−−−−−−−→ List T ′

in

-

Efficient Program fsk defined

using skeletonlist applications�� ��List T ′
in

fsk−−→ List T ′
out

-

Output Data

Transformation�� ��List T ′
out

unflattenout−−−−−−−−−→ Tout

Fig. 2. Transformation of Data for Transformed Program fsk

Application of skeletonlist�� ��T sk
in

skeletonlist−−−−−−−−→ T sk
out

?

Replace with corresponding call to

Accelerate operation skeletonacc

Accelerate operation skeletonacc

corresponding to skeletonlist�� ��Array shin T sk′
in

skeletonacc−−−−−−−−→ Array shout T sk′
out

Input Data

Transformation

T sk
in

?
toAcc

Array shin T sk′
in

'

&

$

%
- -

Output Data

Transformation

Array shout T sk′
out

?
fromAcc

T sk
out

'

&

$

%
Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

Fig. 2. Transformation of Data for Transformed Program fsk

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

Input Data

Transformation�� ��Tin
flattenin−−−−−−−→ List T ′

in

-

Efficient Program fsk defined

using skeletonlist applications�� ��List T ′
in

fsk−−→ List T ′
out

-

Output Data

Transformation�� ��List T ′
out

unflattenout−−−−−−−−−→ Tout

Fig. 2. Transformation of Data for Transformed Program fsk

Application of skeletonlist�� ��T sk
in

skeletonlist−−−−−−−−→ T sk
out

?

Replace with corresponding call to

Accelerate operation skeletonacc

Accelerate operation skeletonacc

corresponding to skeletonlist�� ��Array shin T sk′
in

skeletonacc−−−−−−−−→ Array shout T sk′
out

Input Data

Transformation

T sk
in

?
toAcc

Array shin T sk′
in

'

&

$

%
- -

Output Data

Transformation

Array shout T sk′
out

?
fromAcc

T sk
out

'

&

$

%
Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

120 Venkatesh Kannan, G. W. Hamilton

5 Future Work

We are currently working on formally specifying the transformations rules to
parallelise a distilled program, which was described in Section 4. Following this,
we will comprehensively evaluate our approach qualitatively and quantitatively.

To evaluate our parallelisation approach, we require a suite of benchmark
programs with diverse definitions for each. These programs will include vector
dot-product, point-wise vector/matrix arithmetic, matrix multiplication, search
algorithm, sort algorithm, histogram generation, image rotation, image convo-
lution, string reverse algorithm, and maximum segment sum algorithm.

One part of our evaluation will be a qualitative analysis of the coverability of
our representation of parallel computations and of the proposed parallelisation
technique. We define coverability as the ability to identify potential data parallel
computations in a spectrum of diverse definitions of benchmark programs. All
the programs we have chosen for benchmarking have potential data parallelism.
By distilling these programs and applying our transformation to identify the
skeletons, we evaluate their coverability over different forms in which data par-
allel computations may be expressed in the benchmark programs. Following this,
we will address the inclusion of additional skeletons or combinations of skeletons
to identify data parallel computations that are otherwise manually identifiable.

Another part of our evaluation will be a quantitative analysis of the per-
formance of our parallelisation technique and the execution of the parallelised
programs that are produced. We will perform a quantitative analysis using the
benchmark programs by comparing the performance metrics listed below for
different configurations of CPU-GPU based hardware and OpenCL program ex-
ecution environment settings such as varying sizes of datasets, number of threads
created, number of work-groups, and work-group sizes. We will also determine
the overhead involved in program and data transformation as a factor of the
difference in execution times of parallelised and non-parallelised versions of the
benchmark programs.

The performance metrics for the quantitative analysis are:

1. Execution time
(a) Time to transfer data between system main memory and GPU memory.
(b) Time to transfer code from system main memory to GPU memory.
(c) Time to execute the identified data parallel computations on GPU, and

remaining computations on CPU.
(d) Time to execute the parallelised input program on a multi-core CPU.
(e) Time to execute the given input program without parallelisation on CPU.

2. Program transformation time
(a) Time to parallelise a given input benchmark program using our approach.

3. Data transformation time
(a) Time to flatten input data into lists.
(b) Time to transform input data into Accelerate array using fromList.
(c) Time to transform output data from Accelerate operations using toList.
(d) Time to unflatten the output data to get the final result.

Extracting Data Parallel Computations from Distilled Programs 121

With respect to OpenCL code, metrics 1a, 1b and 1c listed above will be
collected by time-stamping the corresponding OpenCL APIs that are used to
transfer code and data between the system main memory and the GPU memory,
and to schedule the execution of OpenCL kernel functions on the device.

To collect the metrics 1c, 1d, 1e, 2a, 3a, 3b, 3c and 3d that are related to the
execution of computations on CPU, we intend to use the Criterion [17] or the
ThreadScope [18] performance measurement packages for Haskell.

6 Conclusion and Related Work

To summarise, we automate the process of extracting potential parallelism in a
given functional program to enable its execution on a heterogeneous architec-
ture with CPUs and GPUs. For this, we choose a set of skeletons that are widely
used to define data parallel computations in programs. Presently, we aim to use
the characteristics of these skeletons to identify and extract their instances from
programs in distilled form. Applications of the identified skeleton instances will
then be replaced with calls to the corresponding operators in the Accelerate li-
brary, which provides efficient implementations for the skeletons in OpenCL so
that they can be executed on multi-core CPUs and GPUs. In the next steps, we
will complete the transformations required to call Accelerate library operators,
and evaluate the efficiency of the enlisted skeletons to identify potential paral-
lelism in a suite of benchmark programs. This will also include evaluation of the
speedups gained from executing the data parallel computations on the GPU.
Finally, we plan to investigate enlisting additional skeletons to encompass more
parallel computation patterns including task parallelism, and address a wider
range of input programs.

Previously, the use of skeletons as building blocks during program develop-
ment has been widely studied. The early works by Murray Cole [8] and Darling-
ton et. al. [9] exhaustively investigate the use of higher-order skeletons for the
development of parallel programs. They present a repertoire of skeletons that
cover both task parallel and data parallel computations that may be required to
implement algorithms. Later on, addressing the possible difficulties in choosing
appropriate skeletons for a given algorithm, Hu et. al. proposed a transformation
called diffusion in [13]. Diffusion is capable of decomposing recursive definitions
of a certain form into several functions, each of which can be described by a
skeleton. They also present an algorithm that can transform a wider range of
programs to a form that is decomposable by diffusion. This work has further led
to the accumulate skeleton [14], a more general parallel skeleton to address a
wider range of parallelisable problems.

Following the use of skeletons as building blocks in parallel program devel-
opment, there has been significant work on including parallel primitives as an
embedded language in widely used functional languages such as Haskell. One
of the earliest works can be traced to Jouret [16], who proposed an extension
to functional languages with data parallel primitives and a compilation strategy
onto an abstract SIMD (Single Instruction Multiple Data) architecture. Obsid-

122 Venkatesh Kannan, G. W. Hamilton

ian is a language for data parallel programming embedded in Haskell, developed
by Claessen et. al. [6]. Obsidian provides combinators in the language to ex-
press parallel computations on arrays, for which equivalent C code is generated
for execution on GPUs. An evaluation by Alex Cole et. al. [7] finds that the
performance results from generating GPU code from Haskell with Obsidian are
acceptably comparable to expert hand-written GPU code for a wide range of
problems. Among others, Accelerate [4] provides a domain-specific high-level
language that works on a custom array data type, embeddeded in Haskell. Us-
ing a library of array operations, which have efficient parameterised CUDA and
OpenCL implementations, Accelerate allows developers to write data parallel
programs using the skeleton-based approach that can be executed on GPUs.

Despite the extensive work on identifying and developing skeletons, these
approaches require manual analysis and identification of potential parallelism in
a problem during development. As stated earlier, this can be quite tedious in
non-trivial problems. On the other hand, a majority of the literature on skeletons
involve map and reduce for data parallel computations, which are integral in our
work to automate parallelisation. We include the zipWith skeleton to address
problems that operate on multiple flat datasets.

Another option for a parallel programmer is Data Parallel Haskell (DPH),
an extension to the Glasgow Haskell Compiler (GHC), which supports nested
data parallelism with focus on multi-core CPUs. Though flat data parallelism
is well understood and supported, and better suited for GPU hardware, nested
data parallelism can address a wider range of problems with irregular parallel
computations (such as divide-and-conquer algorithms) and irregular data struc-
tures (such as sparse matrices and tree structures). To resolve this, DPH, which
focuses on such irregular data parallelism, has two major components. One is
a vectorisation transformation that converts nested data parallelism expressed
by the programmer, using the DPH library, into flat data parallelism [15]. The
second component is a generic DPH library that maps flat data parallelism to
GHC’s multi-threaded multi-core support [5]. It is worth pointing out that our
method to automate parallelisation includes flattening steps that are similar to
the vectorisation transformation in DPH. This flattening step provides a com-
mon form to the transformed input program and our enlisted skeletons, thereby
aiding in the extraction of flat data parallel computations.

Acknowledgement

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

References

[1] L. Augustsson. Compiling Pattern Matching. Functional Programming Languages
and Computer Architecture, 1985.

Extracting Data Parallel Computations from Distilled Programs 123

[2] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press,
1990.

[3] Manuel M. T. Chakravarty, Robert Clifton-Everest, Gabriele Keller,
Sean Lee, Ben Lever, Trevor L. McDonell, Ryan Newtown, and Sean
Seefried. An Embedded Language For Accelerated Array Computations.
http://hackage.haskell.org/package/accelerate.

[4] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating Haskell Array Codes with Multicore GPUs. Pro-
ceedings of the Sixth Workshop on Declarative Aspects of Multicore Programming,
2011.

[5] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: A Status Report. Workshop
on Declarative Aspects of Multicore Programming (DAMP’07), 2007.

[6] Koen Claessen, Mary Sheeran, and Joel Svensson. Obsidian: GPU Programming
In Haskell. Proceedings of 20th International Symposium on the Implementation
and Application of Functional Languages (IFL 08), 2008.

[7] Alex Cole, Alistair A. McEwan, and Geoffrey Mainland. Beauty And The Beast:
Exploiting GPUs In Haskell. Communicating Process Architectures, 2012.

[8] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, Cambridge, MA, USA, 1991.

[9] John Darlington, A. J. Field, Peter G. Harrison, Paul Kelly, D. W. N. Sharp,
Qiang Wu, and R. Lyndon While. Parallel Programming Using Skeleton Func-
tions. Lecture Notes in Computer Science, 5th International PARLE Conference
on Parallel Architectures and Languages Europe, 1993.

[10] Michael Dever and G. W. Hamilton. Automatically Partitioning Data to Facilitate
the Parallelization of Functional Programs. PSI’14, 8th International Andrei
Ershov Memorial Conference, 2014.

[11] G. W. Hamilton. Distillation: Extracting the essence of programs. Proceedings of
the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation, 2007.

[12] G. W. Hamilton and Neil D. Jones. Distillation With Labelled Transition Systems.
Proceedings of the ACM SIGPLAN 2012 workshop on Partial Evaluation and
Program Manipulation, 2012.

[13] Zhenjiang Hu, Masato Takeichi, and Hideya Iwasaki. Diffusion: Calculating Effi-
cient Parallel Programs. In 1999 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM 99), 1999.

[14] Hideya Iwasaki and Zhenjiang Hu. A New Parallel Skeleton For General Accu-
mulative Computations. International Journal of Parallel Programming, 2004.

[15] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel
M. T. Chakravarty. Harnessing the Multicores: Nested Data Parallelism in
Haskell. Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’08), 2008.

[16] Guido K. Jouret. Compiling Functional Languages For SIMD Architectures. Par-
allel and Distributed Processing, IEEE Symposium on, 1991.

[17] B. O’Sullivan. The Criterion Package. http://hackage.haskell.org/package/criterion.
[18] Satnam Singh, Simon Marlow, Donnie Jones, Duncan Coutts, Miko-

laj Konarski, Nicolas Wu, and Eric Kow. The ThreadScope Package.
http://hackage.haskell.org/package/threadscope.

[19] Philip Wadler. Efficient Compilation of Patten Matching. S. P. Jones, editor,
The Implementation of Functional Programming Languages, 1987.

	Introduction
	Language
	Parallel Computations and Skeletons
	Program Parallelisation
	Data Type Transformation
	Parallelisation Technique
	An Example : Find Maximum
	Execution of Data Parallel Computations
	Accelerate Library.

	Future Work
	Conclusion and Related Work

