
Construction of Exact Polyhedral Model for
Affine Programs with Data Dependent

Conditions

Arkady V. Klimov

Institute of Design Problems in Microelectronics, Russian Academy of Sciences,
Moscow, Russia

arkady.klimov@gmail.com

Abstract. Parallelizing compilers usually build polyhedral model (PM)
for program parts which are referred to as static control parts (SCoP)
and normally include regular nested loops with bounds and array indices
being affine expressions of surrounding loop variables and parameters.
Usually, PM has the form of a parametric (depending on integer param-
eters) graph that connects all array reads with respective array writes.
Sometimes certain extensions of program class are allowed. We present
our graph representation language and our original way to build it. Our
buider allows for some dynamic control elements, e.g. arbitrary struc-
tured if with data dependent condition. Data dependent array indices
can be incorporated in similar way.
Our PM representation can be treated as a program, equivalent to the
original one, in a programming language with specific semantics. Two
different semantic definitions are proposed. The ordinary one is SRE,
System of Recursive Equations, and another, our original one, is DF, a
dataflow semantics which is in some sense inverse to SRE. In particular,
this means that our model is exact, whereas existing approaches yield
generally, for programs with dynamic control elements, only approxi-
mate, or fuzzy models (in the sense that they appoint to some read not
a specific write, but a set of possible writes).
As the PM carries the total semantics of the program, it can be used
with various purposes for analysis, transformation, equivalence testing,
etc. instead of original programs.

Keywords: polyhedral model, affine loop nests, data dependent con-
ditionals, recurrence equations, dataflow semantics, program analysis,
program transformation, equivalence testing

1 Introduction

The concept of polyhedral model (PM) appeared in the domain of automated
parallelization. Most modern parallelizing compilers use the polyhedral model
as an important source of information about the source program on behalf of
the ability of reordering or parallelizing statements. Unfortunately, the class of

Construction of Exact Polyhedral Model 137

programs for which the model can be built is strongly restricted. Normally, it
embraces affine loop nests with assignments in between, in which loop bounds
and array element indices are affine expressions of surrounding loop variables and
fixed structure parameters (array sizes etc.). If-statements with affine conditions
are also allowed. Methods of building exact polyhedral model are well developed
[3–6,18] for this class of programs.

The polyhedral model provides statement instance-wise and array element-
wise information on the dependences between all array element reads and array
element writes. The compiler usually wants to know whether there is a depen-
dence between given two statements under certain conditions. However, for the
use in program parallelization, this model generally does not need to be pre-
cise: the exact information flow is irrelevant and false positive dependences are
admissible.

In contrast, our aim is to totally convert the source program into the dataflow
computation model such that it could be executed in a suitable machine. Thus
we need the exact flow dependence information, and any kind of approximation
is unacceptable. But as we know exactly all flow (true) dependences, we may
ignore all other kinds of dependences, such as input, output, or anti-dependences.

When the source program is purely affine, the usual polyhedral model is exact
and sufficient for our purpose. In such a model for each instance of read (load)
operation there is an indication of the unique instance of write (store) operation
that has written the value being read. This indication is usually represented in
the form of a function (the so-called source function) that takes iteration vector
of the read (and structure parameters) and produces the name and the iteration
vector of a write or symbol ⊥ indicating that such writes do not exist and the
original state of memory is read.

However when the source program contains also one or several if-statements
with non-affine (e.g. data dependent) conditions the known methods suggest
only approximate model which identifies a set of possible writes for each read.
Authors usually refer such models as fuzzy [6]. In some specific cases their model
may provide a source function that uses as its input also values of predicates
associated with non-affine conditionals in order to produce the unique source.
As a rule these cases are those in which the number of such predicate values is
finite (uniformly bounded).

In contrast, we built for arbitrary affine program with non-affine conditionals
an exact and complete polyhedral model. Our model representation language is
extended with predicate symbols corresponding to non-affine conditions of the
source code. From such a model the exact source function for each read can be
easily extracted. The resulting source function depends generally on iteration
vector of the read and structure parameters as well as on an unlimited number
of predicate values.

But the source function is not our aim. Rather it is the complete dataflow
model, which can be treated, independently of the source program, as another
program in a dataflow computation model. From the parallelization perspec-
tive this program carries implicitly the maximum amount of parallelism that is

138 Arkady V. Klimov

reachable for the source program. A more detailed motivation and presentation
of our approach can be found in [12,13].

In this paper we describe our original way of building dataflow model for
affine programs and then show how it can be expanded to programs with non-
affine conditionals. The affine class and the concept of affine solution tree are
defined in Section 2. Sections 3–5 describe our algorithm of construction of the
PM. It comprises of several passes. The first pass building effects is described
in Section 3. In Section 3.1 we introduce the concept of statement effect and
define the process of its construction along the AST. Simultaneously we build a
resulting graph skeleton which is described in Section 3.2. Section 3.3 (together
with 5.2) describes our method of dealing with non-affine conditionals. Section 4
is about the second pass building states. In Section 4.1 we introduce the concept
of state and define the process of its computation along the AST. In Section
4.2 we use states to build all source functions comprising the source graph (S-
graph). In Section 5 we describe the third pass in which S-graph is inverted
(Section 5.1) into a use graph (U -graph) which allows for direct execution in the
dataflow computation model. Section 5.2 explains additional processing required
for non-affine conditionals. Several examples are presented in Section 6. Section 7
is devoted to possible applications of polyhedral model. Section 8 compares and
bridges our approach and achievements with those described in the literature.

2 Some Formalism

Consider a Fortran program fragment P , subroutine for simplicity. First of all,
we are interested in memory accesses that have the form of array element access
and are divided into reads and writes. Usually, in an assignment statement, there
are zero or several read accesses and a single write access. For simplicity and
without loss of generality we allow accesses only to an individual array element,
not to a whole array or subarray. Scalars are treated as 0-dimension arrays.

We define a computation graph by simply running the program P with some
input data. The graph consists of two kinds of nodes: reads and writes, corre-
sponding respectively to executions of read or write memory accesses. There is
a link from a write instance w to a read instance r if r reads the value written
by w. In other words, r uses the same memory cell as w and w is the last write
to this cell before r.

Now that our purpose is to obtain a compact parametric description of all
such graphs for a given program P , we consider a limited class of programs, for
which such a description is feasible. Such programs must fit the so-called affine
class, which can be formally defined by the set of constructors presented in
Fig.1. The right hand side e of an assignment may contain array element access
A(i1, . . . , ik), k ≥ 0. All index expressions as well as bounds e1 and e2 of do-loops
must be affine in surrounding loop variables and structure parameters. Affine
expressions are those built from variables and integer constants with addition,
subtraction and multiplication by literal integer. Also, in an affine expression,

Construction of Exact Polyhedral Model 139

Λ (empty statement)
A(i1, . . . , ik) = e (assignment, k ≥ 0)
S1; S2 (sequence)
if c then S1; else S2; endif (conditional)
do v= e1, e2; S; enddo (do-loop)

Fig. 1. Affine program constructors

we allow whole division by literal integer. Condition c also must be affine, i.e.
equivalent to e = 0 or e > 0 where e is affine.

Programs that satisfy these limitations are often called static control pro-
grams (SCoP) [6,7]. Their computation graph depends only on symbolic param-
eters and does not depend on dynamic data values. Further we remove the re-
striction that conditional expression c must be affine. Programs of the extended
class are usually called dynamic control programs (DCoP). We wont consider
programs with while-loops or non-affine array indices leaving it to future inves-
tigation.

A point in the computation trace of an affine program may be identified as
(s, Is), where s is a (name of a) point in the program and Is is the iteration
vector, that is a vector of integer values of all enclosing loop variables of point s.
The list of these variables will be denoted as Is, which allows to depict the point
s itself as (s, Is). (Here and below boldface symbols denote variables or list of
variables as syntactic objects, while normal italic symbols denote some values as
usual).

Thus, denoting an arbitrary read or write instance as (r, Ir) or (w, Iw) re-
spectively, we represent the whole computation graph as a mapping:

FP : (r, Ir) 7→ (w, Iw) (1)

which for any read node (r, Ir) yields the write node (w, Iw) that has written
the value being read, or yields ⊥ if no such write exist and thus the original
contents of the cell is read. In other words, it yields a source for each read. Thus
this form of graph is called a source graph, or S-graph.

However, for translation to our dataflow computation model we need the
reverse: for each write node to find all read nodes (and there may exist several
or none of them) which read the very value written. So, we need the multi-valued
mapping

GP : (w, Iw) 7→ {(r, Ir)} (2)

which for each write node (w, Iw) yields a set of all read nodes {(r, Ir)} that
read that very value written. We will refer to this form of computation graph as
a use graph, or U -graph.

A subgraph of S-graph (U -graph) associated with a given read r (write w)
will be referred to as an r-component (w-component).

For each program statement (or point) s we define the domain Dom(s) as
a set of values of iteration vector Is, such that (s, Is) occurs in the compu-

140 Arkady V. Klimov

tation. The following proposition summarizes the well-established property of
affine programs [4–7,15,18,23] (which is also justified by our algorithm).

Proposition 1. For any statement (s,Is) in affine program P its domain Dom(s)
can be represented as finite disjoint union

⋃
i Di, such that each subdomain Di

can be specified as a conjunction of affine conditions of variables Is and struc-
ture parameters, and, when the statement is a read (r, Ir), there exist such Di

that the mapping FP on each subdomain Di can be represented as either ⊥ or
(w, (e1, . . . , em)) for some write w, where each ei is an affine expression of vari-
ables Ir and structure parameters.

This property suggests the idea to represent each r-component of FP as a
solution tree with affine conditions at branching vertices and terms of the form
S{e1, . . . , em} or ⊥ at leaves. A similar concept of quasi-affine solution tree,
quast, was suggested by P. Feautrier [5].

A single-valued solution tree (S-tree) is a structure used to represent r-
components of a S-graph. Its syntax is shown in Fig.2. It uses just linear expres-
sions (L-expr) in conditions and term arguments, so a special vertex type was
introduced in order to implement integer division.

S-tree ::= ⊥
| term
| (L-cond→ S-treet : S-treef) (branching)
| (L-expr =: num var + var→ S-tree) (integer division)

term ::= name{L-expr1, . . . ,L-exprk} (k ≥ 0)
var ::= name
num ::= . . . | −2 | −1 | 0 | 1 | 2 | 3 | . . .
L-cond ::= L-expr = 0 | L-expr > 0 (affine condition)
L-expr ::= num | numvar + L-expr (affine expression)
atom ::= ⊥ | name{num1, . . . ,numk} (ground term, k ≥ 0)

Fig. 2. Syntax for single-valued solution tree

Given concrete integer values of all free variables of the S-tree it is possible
to evaluate the tree with a ground term as a result value. Here are evaluation
rules, which must be applied iteratively while it is possible.

A branching like (c → T1 : T2) evaluates to T1 if conditional expression c
evaluates to true, otherwise to T2.

A division (e =: mq + r → T) introduces two new variables (q, r) that take
respectively the quotient and the remainder of integer division of integer value
of e by positive constant integer m. The tree evaluates as T with parameter list
extended with values of these two new variables. Note that the whole tree does
not depend on variables q and r because they are bound variables.

It follows from Proposition 1 that for an affine program P the r-component
of the S-graph FP for each read (r, Ir) can be represented in the form of S-tree
T depending on variables Ir and structure parameters.

Construction of Exact Polyhedral Model 141

However the concept of S-tree is not sufficient for representing w-components
of U -graph, because those must be multi-valued functions in general. So, we
extend the definition of S-tree to the definition of multi-valued tree, M -tree, by
two auxiliary rules shown on Fig 3.

M-tree ::= . . . the same as for S-tree . . .
| (&M-tree1 . . .M-treen) (finite union, n ≥ 2)
| (@ var→ M-tree) (infinite union)

Fig. 3. Syntax for multi-valued tree

The semantics also changes. The result of evaluating M -tree is a set of atoms.
Symbol ⊥ now represents the empty set, and the term N{. . .} represents a
singleton.

To evaluate (&T1, . . . , Tn) one must evaluate sub-trees Ti and take the union
of all results. The result of evaluating (@v → T) is mathematically defined as
the union of infinite number of results of evaluating T with each integer value
v of variable v. In practice the result of evaluating T is non-empty only within
some bound interval of values v. In both cases the united subsets are supposed
to be disjoint.

Below we present the scheme of our algorithm of building a S-graph (Sections
3 and 4) and then a U -graph (Section 5).

3 Building Statement Effect

3.1 Statement Effect and its Evaluation

Consider a program statement S, which is a part of an affine program P , and
some k-dimensional array A. Let (wA, IwA) denote an arbitrary write operation
on an element of array A within a certain execution of statement S, or the
totality of all such operations. Suppose that the body of S depends affine-wise
on free parameters p1, . . . , pl (in particular, they may include variables of loops
surrounding S in P). We define the effect of S with respect to array A as a
function

EA[S] : (p1, . . . , pl; q1, . . . , qk) 7→ (wA, IwA) +⊥

that, for each tuple of parameters p1, . . . , pl and indices q1, . . . , qk of an element
of array A, yields an atom (wA, IwA) or ⊥. The atom indicates that the write
operation (wA, IwA) is the last among those that write to element A(q1, . . . , qk)
during execution of S with affine parameters p1, . . . , pl and ⊥ means that there
are no such operations.

The following statement is another form of Proposition 1: the effect can be
represented as an S-tree with program statement labels as term names. We shall
call them simply effect trees.

142 Arkady V. Klimov

Building effect is the core of our approach. Using S-trees as data objects we
implemented some operations on them that are used in the algorithm presented
on Fig.4. A good mathematical foundation of similar operations for similar trees
has been presented in [8].

The algorithm proceeds upwards along the AST from primitives like empty
and assignment statements. Operation Seq computes the effect of a statement
sequence from the effects of component statements. Operation Fold builds the
effect of a do-loop given the effect of the loop body. For conditional statement
with affine condition the effect is built just by putting the effects of branches
into the new conditional node.

EA[Λ] = ⊥ (empty statement)
EA[S1;S2] = Seq(EA[S1],EA[S2]) (sequence)
EA[LA : A(e1, . . . , ek) = e] = (assignments to A)

(q1 = e1 → . . . (qk = ek → LA{I} : ⊥) . . . : ⊥)
where I is a list of all outer loop variables

EA[LB : B(. . .) = e] = ⊥ (other assignments)
EA[if c then S1 else S2 endif] = (c→ EA[S1] : EA[S2]) (conditional)
EA[do v = e1, e2; S; enddo] = Fold(v, e1, e2,EA[S]) (do-loop)

Fig. 4. The rules for computing effect tree wrt k-dimensional array A

The implementation of function Seq is straight. To compute Seq(T1,T2) we
simply replace all ⊥ leaves in T2 with a copy of T1. The result is then be sim-
plified by a function Prune which prunes unreachable branches by checking the
feasibility of affine conjunctions (the check is known as Omega-test [18]).

The operation Fold(v, e1, e2, T), where v is a variable and e1 and e2 are affine
expressions, produces another S-tree T ′ that does not depend on v and represents
the following function. Depending on all other parameters of e1, e2 and T we find
the maximum value v of variable v in between values of e1 and e2, for which T
evaluates to a term t (not ⊥), and yield the term t for that value v as the result.
Building this T ′ usually involves the solution of parametric integer programming
problems (1-dimensional) and combining the results.

3.2 Graph Node Structure

In parallel with building the effect of each statement we also compose a graph
skeleton, which is a set of nodes with placeholders for future links. For each
assignment a separate node is created. At this stage the graph nodes are associ-
ated with AST nodes, or statements, in which they were created, for the purpose
that will be explained below in Section 4. The syntax (structure) of a graph node
description is presented in Fig.5.

Non-terminals ending with s usually denote an arbitrary number of its base
word (a repetition), e.g. ports signifies list of ports. A node consists of a header

Construction of Exact Polyhedral Model 143

node ::= (node (name context)
(dom conditions)
(ports ports)
(body computations)
)

context ::= names
condition ::= L-cond | TF-tree
port ::= (name type source)
computation ::= (eval name type expression destination)
source ::= S-tree | IN
destination ::= M-tree | OUT

Fig. 5. Syntax for graph node description

with name and context, domain description, list of ports that describe inputs
and a body that describes output result. The context here is just a list of loop
variables surrounding the current AST node. The domain specifies a condition
on these variables for which the graph node instance exists. Besides context
variables it may depend on structure parameters. Ports and body describe inputs
and outputs. The source in a port initially is usually an atom (or, generally, an S-
tree) depicting an array access (array name and index expressions), which must
be eventually resolved into a S-tree referencing other graph nodes as the sources
of the value (see Section 4.2). A computation consists of a local name and type
of an output value, an expression to be evaluated, and a destination placeholder
⊥ which must be replaced eventually by a M-tree that specifies output links (see
Section 5). The tag IN or OUT declares the node as input or output respectively.

Consider for example a statement S=S+A(i) of the summation program in
Fig.8a. The initial view of the corresponding graph node is shown in Fig.6. Note
that the expression in eval clause is built from the right hand side by replacing
all occurrences of scalar or array element references with their local names (that
became port names as well). A graph node for assignment usually has a single
eval clause that represents the generator of values written by the assignment.
Thereby a term of effect tree may be considered as a reference to a graph node
output.

(node (S1 i)
(dom (i ≥ 1)(i ≤ n))
(ports (s1 double S{}) (a1 double A{i}))
(body (eval S double (s1 + a1) ⊥))
)

Fig. 6. An initial view of graph node for statement S=S+A(i)

144 Arkady V. Klimov

3.3 Processing Non-affine Conditionals

When the source program contains a non-affine conditional statement S, special
processing is needed. We add a new kind of condition, a predicate function call,
or simply predicate, depicted as

namebool-const{L-exprs} (3)

that may be used everywhere in the graph where a normal affine expression can.
It contains a name, sign T or F (affirmation or negation) and a list of affine
arguments.

However, not all operations can deal with such conditions in argument trees.
In particular, the Fold cannot. Thus, in order that Fold can work later we perform
the elimination of predicates immediately after they appear in the effect tree of
a non-affine conditional statement.

First, we drag the predicate p, which is initially on the top of the effect tree
EA[S] = (p→ T1 : T2), downward to leaves. The rather straightforward process
is accomplished with pruning. In the result tree, TS , all copies of predicate p
occur only in downmost positions of the form (p → A1 : A2), where each Ai is
either term or ⊥. We call such conditional sub-trees atomic. In the worst case
the result tree will have a number of atomic sub-trees being a multiplied number
of atoms in sub-trees T1 and T2.

Second, each atomic sub-tree can now be regarded as an indivisible composite
value source. When one of Ai is ⊥, this symbol depicts an implicit rewrite of
an old value into the target array cell A(q1, . . . , qk) rather than just no write.
With this idea in mind we now replace each atomic sub-tree U with a new term
Unew{i1, . . . , in} where argument list is just a list of variables occurring in the
sub-tree U . Simultaneously, we add the definition of Unew in the form of a graph
node (associated with the conditional statement S as a whole) which is shown
in Fig.7. This kind of nodes will be referred to as blenders as they blend two
input sources into a single one. The domain of the new node is that of statement

(node (Unew i1 . . . in)
(dom Dom(S) + path-to-U -in-TS)
(ports (a t (p→ RW(A1) : RW(A2)))
(body (eval a t a⊥))
)

Fig. 7. Initial contents of the blender node for atomic subtree U in EA[S] = TS

S restricted by conditions on the path to the sub-tree U in the whole effect tree
TS . The result is defined as just copying the input value a (of type t). The most
intriguing is the source tree of the sole port a. It is obtained from the atomic sub-
tree U = (p→ A1 : A2). Each Ai is replaced (by operator RW) as follows. When
Ai is a term it remains unchanged. Otherwise, when Ai is ⊥, it is replaced with

Construction of Exact Polyhedral Model 145

explicit reference to the array element being rewritten, A(q1, . . . , qk). However, an
issue arises: variables q1, . . . , qk are undefined in this context. The only variables
allowed here are i1, . . . , in (and fixed structure parameters). Thus we need to
express indices q1, . . . , qk through known values i1, . . . , in.

To resolve this issue consider the list of (affine) conditions L on the path
to the subtree U in the whole effect tree TS as a set of equations connecting
variables q1, . . . , qk and i1, . . . , in.

Proposition 2. Conditions L specify a unique solution for values q1, . . . , qk de-
pending on i1, . . . , in.

Proof. Consider another branch Aj of subtree U , which must be a term. We
prove a stronger statement, namely, that given exact values of all free variables
occurring in Aj , Vars(Aj), all q-s are uniquely defined. The term Aj denotes
the source for array element A(q1, . . . , qk) within some branch of the conditional
statement S. Note, however, that this concrete source is a write on a single
array element only. Hence, array element indices q1, . . . , qk are defined uniquely
by Vars(Aj). Now recall that all these variables are present in the list i1, . . . , in
(by definition of this list). ut

Now that the unique solution does exist, it can be easily found by our affine
machinery. See Section 5 in which the machinery used for graph inversion is
described.

Thus, we obtain, for conditional statement S, the effect tree that does not
contain predicate conditions. All predicates got hidden within new graph nodes.
Hence we can continue the process of building effects using the same operations
on trees as we did in the purely affine case. Also for each predicate condition a
node must be created that evaluates the predicate value.

We shall return back to processing non-affine conditionals in Section 5.2.

4 Evaluation and Usage of States

4.1 Computing States

A state before statement (s, Is) in affine program fragment P with respect to
array element A(q1, . . . , qk) is a function that takes as arguments the iteration
vector Is = (i1, . . . , in), array indices (q1, . . . , qk) and values of structure param-
eters and yields the write (w, Iw) in the computation of P that is the last among
those that write to array element A(q1, . . . , qk) before (s, Is).

In other words this function presents an effect of executing the program from
the beginning up to the point just before (s, Is) wrt array A. It can be expressed
as an S-tree, which may be called a state tree at program point before statement
s for array A.

To compute state trees for each program point we use the following method.
So far for each statement B in an affine program fragment P we have com-

puted the S-tree EA[B] representing the effect of B wrt array A. Now we are to

146 Arkady V. Klimov

compute for each statement B the S-tree ΣA[B] representing the state before B
wrt array A.

For the starting point of program P we set

ΣA[P] = (q1 ≥ l1 → (q1 ≤ u1 → . . .A init{q1, . . .} . . . : ⊥) : ⊥) (4)

where term A init{q1, . . . , qk} signifies an untouched value of array element
A(q1, . . . , qk) and li, ui are lower and upper bounds of array dimensions (which
are only allowed to be affine functions of fixed parameters). Thus, (4) signifies
that all A’s elements are untouched before the whole program P .

The further computation of ΣA is described by the following production rules:

1. Let ΣA[B1;B2] = T . Then ΣA[B1] = T . The state before any starting part
of B is the same as that before B.

2. Let ΣA[B1;B2] = T . Then ΣA[B2] = Seq(T,EA[B1]). The state after the
statement B1 is that before B1 combined by Seq with the effect of B1.

3. Let ΣA[if c then B1 else B2 endif] = T . Then ΣA[B1] = ΣA[B2] = T .
The state before any branch of if-statement is the same as before the whole
if-statement.

4. Let ΣA[do v = e1, e2; B; enddo] = T . Then

ΣA[B] = Seq(T,Fold(v, e1, v−1,EA[B])) (5)

The state before the loop body B with the current value of loop variable v is
that before the loop combined by Seq with the effect of all preceding iterations
of B.

The last form (5) needs some comments. It is the case in which the upper limit
in the Fold clause depends on v. To be formally correct, we must replace all other
occurrences of v in the clause with a fresh variable, say v′. Thus, the resulting
tree will (generally) contain v, as it expresses the effect of all iterations of the
loop before the v-th iteration. The situation is much like that of∫ x

0

f(x)dx.

Using the rules 1-4 one can achieve (and compute the state in) any internal point
of the program P (a point may be identified by a statement following it). For
speed, we do not compute the state wrt array X at some point if there are no
accesses to X within the current block after that point. Also, we compute only
once the result of Fold with a variable as the upper limit and then use the result
both for the effect of the whole loop and for the state at the beginning of the
body.

The following proposition limits the usage, within a state tree T , of terms
whose associated statements are enclosed in a conditional statement with non-
affine condition. It will be used further in Section 5.2.

Proposition 3. Let a conditional statement S with non-affine condition be at a
loop depth m within a dynamic control program P . Consider a state tree STp =

Construction of Exact Polyhedral Model 147

ΣA[p] in a point p within P w.r.t. an array A. Let A{i1, . . . , ik} be a term in STp,
whose associated statement, also A, is inside a branch of S. Then the following
claims are all true:

– m ≤ k,
– p is inside the same branch of S and
– indices i1, . . . , im are just variables of loops enclosing S.

Proof. Let A be a term name, whose associated statement A is inside a branch
b of a conditional statement S with non-affine condition. It is either assignment
to an array, say A, or a blender node emerged from some inner conditional (per-
forming a ”conditional assignment” to A). From our way of hiding predicate
conditions described in Section 3.3 it follows that the effect tree of S, EA[S], as
well as of any other statement containing S, will not contain a term with name
A. Hence, due to our way of building states from effects described above, this
is also true for the state tree of any point outside S, including the state STS

before the S itself. Now, consider the state STp of a point p within a branch b1
of S. (Below we’ll see that b1 = b). We have

STp = Seq(STS , STS−p), (6)

where STS−p is the effect of executing the code from the beginning of the branch
b1 to p (recall that the state before the branch b1, STb1 , is the same as STS

according to Rule 3 above). Consider a term A{i1, . . . , ik} in STp. As it is not
from STS , it must be in STS−p. Obviously, STS−p contains only terms associated
with statements of the same branch with p. Thus, b1 = b. And these terms are
only such that their initial m indices are just variables of m loops surrounding
S. Thus, given that the operation Seq does not change term indices, we have the
conclusion of Proposition 3. ut

4.2 Resolving Array Accesses

Now we shall use states before each statement to accomplish building the source
graph FP . Consider a graph node example shown on Fig.6. Initially, source
trees in ports clause contain terms denoting references to array element, like
A{e1, . . . , ek}. We want to resolve each such array access term into subtree with
only normal source terms. Recall that each graph node is associated with a
certain point p in the AST (that is, a statement, or the program point before
the statement) and that we already have a state ΣA[p]. Now we apply ΣA[p]
as a function to indices (e1, . . . , ek) and use the result as a replacement for the
term A{e1, . . . , ek}. As we do the application symbolically (just as a substitution
with subsequent pruning), the result will be a S-tree. Having expanded each
such array access term we get the port source tree in which all terms refer only
to other graph nodes. And the set of all port source trees in all graph nodes
comprises the source graph FP .

Recall that each graph node X has a domain Dom(X) which is a set of
possible context vectors. It is specified by a list of conditions, which are collected

148 Arkady V. Klimov

from surrounding loop bounds and if conditions. The list may contain also
predicate conditions. We write D⇒ p to indicate that the condition p is valid
in D (or follows from D). In case of a predicate condition p = pb{e1, . . . , ek}
it signifies that the list D just contains p (or contains some other predicate
p = pb{f1, . . . , fk} such that D⇒ (ei = fi) for all i = 1, . . . , k). For a S-graph
built so far the following proposition limits the usage of atoms A{. . .} for which
Dom(A) has predicate condition.

Proposition 4. Suppose that B is a regular node (not a blender) whose source
tree T contains a term A{i1, . . . , ik} (corresponding to an assignment to an array
A). Let Dom(A)⇒p, where p = pb{j1, . . . , jm} is a predicate condition. Then:

– m ≤ k,
– j1 = i1, . . . , jm = im, and all these are just variables of loops enclosing the

conditional statement with predicate p,
– Dom(B)⇒p.

Proof. As Dom(A)⇒ pb{j1, . . . , jm}, the predicate p denotes the condition of
a conditional statement S enclosed by m loops with variables j1, . . . , jm, and
this S contains the statement A in the branch b (by construction of Dom). The
source tree T was obtained by a substitution into the state tree before B, STB =
ΣA[B], which must contain a term A{i′1, . . . , i′k}. It follows, by Proposition 3,
that statement B is inside the same branch b (hence, Dom(B) ⇒ p), m ≤ k
and i′1, . . . , i

′
m are just variables j1, . . . , jm. However the substitution replaces

only formal array indices and does not touches enclosing loop variables, here
j1, . . . , jm. Hence i′1 = i1, . . . , i

′
m = im. ut

When B is a blender the assertion of the Proposition 4 is also valid but
Dom(B) should be extended with conditions on the path from the root of the
source tree to the term A{. . .}. The details are left to the reader.

5 Building the Dataflow Model

5.1 Building U-graph by Inverting S-graph: Affine Case

In dataflow computation model the data flow from source nodes to use nodes.
Thus, the generating node must know exactly which other nodes (and by which
port) need the generated value and sends the data element to all such node-port
pairs. This information, known also as use graph GP , is to be represented in the
form of destination M -trees in the eval clauses of graph nodes. Initially they are
all set to ⊥ as just placeholders.

Suppose the source program fragment P is purely affine. Having the source
graph FP in the form of affine S-trees in node ports, it is not difficult to produce
the inversion resulting in M -trees.

The graph is inverted path-wise: first, we split each tree into paths. Each
path starts with header term R{i1, . . . , in}, ends with term W{e1, . . . , em} and

Construction of Exact Polyhedral Model 149

has a list of affine conditions extended with quotient/remainder definitions like
(e =: kq+r) in between (k is a literal integer here). Only variables i1, . . . , in and
structure parameters can be used in affine expressions e, ei, New variables q
and r may be used only to the right of their definition. The InversePath operation
produces the inverted path that starts with header term W{j1, . . . , jm} with new
formal variables j1, . . . , jm, ends with term R{f1, . . . , fn} and has a list of affine
conditions and divisions in between. Also, universally quantified variables can
be introduced by clause (@v). All affine expressions fi are built with variables
j1, . . . , jm, structure parameters and q/r/@v-variables defined earlier in the list.
The inversion involves solving the system of linear Diophantine equations. In
essence, it can be viewed as a projection or variable elimination process. When
a variable cannot be eliminated it is simply introduced with @-clause.

In general, one or several paths can be produced. All produced paths are
grouped by new headers, each group being an M -tree for respective graph node,
in the form (& T1 T2 . . .) where each Ti is a 1-path tree. Further, the M -tree can
be simplified by the operation SimplifyTree. This operation also involves finding
bounds for @-variables, which are then included into @-vertices in the form:

(@v(l1u1)(l2u2) . . . T)

where li, ui are affine lower and upper bounds of i-th interval, and v must belong
to one of the intervals.

5.2 Inverting S-graph for Programs with Non-affine Conditionals

When program P has non-affine conditionals the above inversion process will
probably yield some M -trees with predicate conditions. Hence, a node with such
M -tree needs the value of the predicate as its input. However, this value may not
necessarily be needed always, and thus it may induce redundant dependences. So,
when a predicate vertex in M-tree does not dominate all term leaves, we should
cut the vertex off and create another node with the sub-tree as a destination
tree. Otherwise, we just add to the node a Boolean port connected to a predicate
evaluating node. We must do so repetitively until all predicates in M -trees refer
to Boolean-valued ports.

In either case some nodes need an additional port for the value of predicate.
We call such nodes filters. In the simplest case a filter has just two ports, one for
the main value and one for the value of the predicate, and sends the main value
to the destination when the predicate value is true (or false) and does nothing
otherwise.

Generally, the domain of each token and each node may have several func-
tional predicates in the condition list. Normally, a token has the same list of
predicates as its source and target nodes. However, sometimes these lists may
differ by one item. Namely, a filter node generates tokens with a longer predicate
list whereas the blender node makes the predicate list one item shorter compared
to that of incoming token. In the examples below arrows are green (dotted) or
red (dashed) depending on the predicate value.

150 Arkady V. Klimov

However, our aim is to produce not only U -graph, but both S-graph and
U -graph which must be both complete and mutually inverse. To simplify our
task we update the S-graph before inversion such that inversion does not pro-
duce predicates in M -trees. To achieve this we check for each port whether its
source node has enough predicates in its domain condition list. When we see
the difference, namely that the source node has less predicates, then we insert
a filter node before that port. And the opposite case, that the source has more
predicates, is impossible, as it follows immediately from Proposition 4.

6 Examples

A set of simple examples of a source program (subroutine) with the two resulting
graphs S-graph and U -graph are shown in Figs. 8,9,11. All graphs has been
built automatically in textual form and then redrawn manually in graphical
view. Nodes are rectangles or other shapes and data dependences are arrows
between them. Usually a node has several input and one output ports. A port
is usually identified as a point on node boundary. The domain is usually shown
once for a group of nodes with the same domain (at the up side in curly braces).
Those groups are separated by a dotted line. Each node should be considered as
a collection of instance nodes of the same type that differ in domain parameters
from each other. Arrows between nodes may fork depending on some condition
(usually it is affine condition of domain parameters), which is then written near
the start of the arrow immediately after the fork. When arrow enters a node
it carries a new context (if it has changed) written there in curly braces. The
simplest and purely affine example in Fig.8 explains the notations. Arrows in the
S-graph are directed from a node port to its source (node output). The S-graph

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

Fig. 8. Fortran program Sum (a), its S-Graph (b) and U -graph (c)

Construction of Exact Polyhedral Model 151

arrows can be interpreted as the flow of requests for input values. More exact
semantics will be described in Section 7.2.

In the U -graph, vice versa, arrows are directed from node output to some
node port. In contrast with the S-graph, they denote actual flow of data. U -graph
execution obeys semantic of dataflow computation model described in Section
7.3.

In the U -graph there also appears the need to get rid of zero-port nodes
which arise from assignments with no one read operation. We simply insert into
such nodes a dummy port which receives a dummy value. It looks as if we use,
in the right hand side of the assignment, a dummy scalar variable that is set
at the start of the program P . Thus a node Start, which generates a token for
node S1 (corresponding to the assignment S=0.0), appeared in the U -graph of
our example.

A simplest example with non-affine conditions is shown on Fig.9. The textual
view of graphs was generated automatically, whereas the graphical view was
drawn by hand.

When a source program contains a non-affine conditional, in the S-graph
there appears a new kind of node, the blender, depicted as a blue truncated
triangle (see Fig. 9b). Formally, it has a single port, which receives data from two
different sources depending on the value of the predicate. Thus, it has another
implicit port for Boolean value (on top). The main port arrows go out from side
edges; true and false arrows are dotted green and dashed red respectively. The
S-graph semantics of the blender is:

1. Invoke the predicate and wait for the result.
2. Depending on the result execute true (green) or false (red) branch.

Fig.8. Fortran program Sum (a), its S-Graph (b) and U-graph (c)

Fig.9. Fortran program Max (a) and its S-Graph (b) and U-graph (c)

Fig.11. Fortran program Bubble (a), and its S-Graph (b) and U-graph (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(c) (a) (b)

subroutine Max(X,n,R)
 real(8) X(n),R
 R=0.0
 do i = 1,n
 if R<X(i) then
 R=X(i)
 endif
 enddo
end

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

R2=X

i=n

R<X

{}

Start Xin(i)

R1=0

Rout

R

{1}

i<n

{i+1}

n=0
n>0

{i|1≤i≤n}

X

R2=X

{n}

R<X

{} {i|1≤i≤n}

Xin(i)

R1=0

Rout

Ri=1

{i-1}

n=0 n>0

i>1

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

(b) (a) (c)

n=0 A2

A2

j>1

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)
i>1

i=0

Z
A1

i=j
{i}

i>0

n>0

{n,i}

j=1

{0}

{0}

A1

{i-1,1}

{i-1,j-1}

{n,1}

{i,j+1}

i=1

i>j

{i,j|1≤i≤n,1≤j≤i}

A2

A2

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)

i=n

Z

A1

n=0

{j}

A1

{i+1,1}
{i+1,j+1}

{i,j-1}

{i,j|1≤i≤n,1≤j≤i}

i=0

i>0n>0

{1,1}

i<n
i=n

j>1

{i,i}

j=1

{0}

i<n

Fig. 9. Fortran program Max (a), its S-Graph (b) and U -graph (c)

In the U -graph the blender does not need a condition: in either case it receives
a value token on its unique port without knowing which node has sent it and
under which condition. However, when the source itself is not under the needed

152 Arkady V. Klimov

condition, a filter node must be inserted in between the source node and the
receiver port (it is shown in Fig.8c as an inverted yellow trapezoid). The predicate
value coming into a side edge and a circle at the entry point indicate that the
main value is passed when the condition is false.

The textual view of the blender from Fig.9 is shown in Fig.10. Note the
predicate FP1{i} on top of the S-tree of the unique port R. The S-tree contains
a reference to BR{i-1} under conjunction (FP1F{i})(i > 1). The backward data
arrow of the U -graph (in the M -tree of evalclause) goes through the filter node
FR1.R{i+1}.

(node (BR i)
(dom (1 ≤ i)(i ≤ n))
(ports (R double (FP1{i} → R2{i} : (i = 1→ R1{} : BR{i− 1}))))
(body (eval R double R(i = n→ R out{} : (&P1.R{i} FR1.R{i + 1})))

Fig. 10. The blender from example on Fig.9

A more complex and interesting example, a bubble sort program and its
graphs, is shown on Fig.11. In contrast with previous ones, the U -graph exhibits
high parallelism: its parallel time is 2n instead of n(n + 1)/2 for sequential
execution.

Fig.8. Fortran program Sum (a), its S-Graph (b) and U-graph (c)

Fig.9. Fortran program Max (a) and its S-Graph (b) and U-graph (c)

Fig.11. Fortran program Bubble (a), and its S-Graph (b) and U-graph (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(c) (a) (b)

subroutine Max(X,n,R)
 real(8) X(n),R
 R=0.0
 do i = 1,n
 if R<X(i) then
 R=X(i)
 endif
 enddo
end

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

R2=X

i=n

R<X

{}

Start Xin(i)

R1=0

Rout

R

{1}

i<n

{i+1}

n=0
n>0

{i|1≤i≤n}

X

R2=X

{n}

R<X

{} {i|1≤i≤n}

Xin(i)

R1=0

Rout

Ri=1

{i-1}

n=0 n>0

i>1

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

(b) (a) (c)

n=0 A2

A2

j>1

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)
i>1

i=0

Z
A1

i=j
{i}

i>0

n>0

{n,i}

j=1

{0}

{0}

A1

{i-1,1}

{i-1,j-1}

{n,1}

{i,j+1}

i=1

i>j

{i,j|1≤i≤n,1≤j≤i}

A2

A2

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)

i=n

Z

A1

n=0

{j}

A1

{i+1,1}
{i+1,j+1}

{i,j-1}

{i,j|1≤i≤n,1≤j≤i}

i=0

i>0n>0

{1,1}

i<n
i=n

j>1

{i,i}

j=1

{0}

i<n

Fig. 11. Fortran program Bubble (a), its S-Graph (b) and U -graph (c)

Construction of Exact Polyhedral Model 153

7 Properties and Usage of Polyhedral Model

7.1 General Form of Dataflow Graph

We start from the purely static control graph, which is a set of nodes with syntax
shown in Fig. 5. In this form both the S-graph and the U -graph are presented.
Ignoring destination trees in eval clauses we get the S-graph, ignoring source
trees in ports we get the U -graph. Both graphs represent the same dependence
relation. It means that the respective set of trees must be mutually inverse.
Recall that source trees representing the S-graph are S-trees (single-values),
while destination trees forming the U -graph are M -trees (multi-valued).

Then we introduce a special kind of node called a predicate which produces
a Boolean condition. This value is used directly by source tree of a blender,
which is an identity node with a single port with the source tree of the form
(p→ T1 : T2), where predicate condition p has the form (3).

As we avoid predicate conditions appearing in destination trees, we introduce
filter nodes, which are in some sense inverse to blenders. Conceptually, filter is
an identity node with the usual input port and the destination tree of the form
(p→ Tout : ⊥). But instead of predicate condition p of the form pb{e1, . . . , ek},
we add a port named p with atom P{e1, . . . , ek} as a source tree and either
(p → Tout : ⊥) or (p → ⊥ : Tout) as a destination tree. Thus filter is used as a
gate which is open or closed depending on the value on port p: the gate is open,
if the value is b, otherwise closed. Note that filters are necessary in U -graph, but
not in S-graph.

The S-graph must satisfy the two following constraints. The first is a con-
sistency restriction. Consider a node X{I} with domain DX and a source tree
T . Let I ∈ DX. Then T (I) is some atom Y{J} such that J ∈ DY. The second
constraint requires that the S-graph must be well-founded, which means that no
one object node X{I} may transitively depend on itself.

7.2 Using the S-graph as a Program

The S-graph can be used to evaluate output values given all input values. Also,
all structure parameters must be known. We assume that each node produces
a single output value (otherwise atom names in source trees should refer to a
node-output pair rather than just a node).

Following [6] we transform the S-graph into a System of Recurence Equa-
tions (SRE), which can be treated as a recursive functional program. Each node
of S-graph is presented as definition of recursive function whose arguments are
context variables. Its right hand side is composed of a body expression with
ports as calls to additional functions, whose right hand sides in turn are ob-
tained from their source trees with atoms and predicates as function calls. Input
nodes are functions defined elsewhere. In Fig.12 is presented a simplified SRE
for the S-graph from Fig.9b. Execution starts with invocation of the output
node function. Evaluation step is to evaluate the right hand side calling other

154 Arkady V. Klimov

P(i) = R(i) < X(i)
B(i) = if P(i) then X(i) else R(i)
R(i) = if i = 1 then R1() else if i > 1 then B(i− 1) else ⊥
R1() = 0
Rout = if n = 0 then R1() else if N > 0 then B(n) else ⊥

Fig. 12. System of Recurrent Equations equivalent to S-graph on Fig.9b

invocations recursively. For efficiency it is worth doing tabulation so that neither
function call is executed twice for the same argument list.

Note, that both the consistency and the well-foundedness conditions together
provide the termination property of the S-graph program.

7.3 Computing the U-graph in the Dataflow Computation Model

The U -graph can be executed as program in the dataflow computation model.
A node instance with concrete context values fires when all its ports get data
element in the form of data token. Each fired instance is executed by computing
all its eval clauses sequentially. All port and context values are used as data
parameters in the execution. In each eval clause the expression is evaluated, the
obtained value is assigned to a local variable and then sent out according to the
destination M -tree. The tree is executed in an obvious way. In the conditional
vertex, the left or right subtree is executed depending on the Boolean value of the
condition. In &-vertices, all sub-trees are executed one after another. An -vertex
acts as a do-loop with specified bounds. Each term of the form R.x{f1, . . . , fn}
acts as a token send statement, that sends the computed value to the graph
node R to port x with the context built of values of fi. The process stops when
all output nodes get the token or when all activity stops (quiescence condition).
To initiate the process, tokens to all necessary input nodes should be sent from
outside.

7.4 Extracting Source Functions from S-graph

There are two ways to extract the source function from the S-graph. First, we
may use the S-graph itself as a program that computes the source for a given
read when the iteration vector of the read as well as values of all predicates
are available. We take the SRE and start evaluating the term R(i1, . . . , in),
where i1, . . . , in are known integers, and stop as soon as some term of the form
W (j1, . . . , jm) is encountered (where W is a node name corresponding to a write
operation and j1, . . . , jm are some integers).

Also, there is a possibility to extract the general definition of the source func-
tion for a given read in a program. We may do it knowing nothing about predi-
cate values. We start from the term R{i1, . . . , in} where i1, . . . , in are symbolic
variables and proceed unfolding the S-graph symbolically into just the S-tree.
Having encountered the predicate node we insert the branching with symbolic

Construction of Exact Polyhedral Model 155

predicate condition (without expanding it further). Having encountered a term
W{e1, . . . , em} we stop unfolding the branch. Proceeding this way we will gen-
erate a possibly infinite S-tree representing the source function in question. If
were lucky the S-tree will be finite. It seems that, in previous works on building
polyhedral models for programs with non-affine if-s [6, 7], the exact result is
produced only when the above process stops with a finite S-tree as a result.

But we can also produce a good result even when the generated S-tree is
infinite (note, that this is the case in examples Max and Bubble). Having en-
countered a node already visited we generalize, i.e. cut-off the earlier generated
sub-tree from that node replacing it with invocation of another function and
schedule the generation of a new function starting from that node. The process
converges to a set of mutually recursive function definitions that implements the
source function in the most unalloyed form.

The process we have just described is a particular case of the well known
supercompilation [10,17,19,21]. In a more general setting this concept can provide
a very elaborate and productive tool for transforming programs represented in
the dataflow (or polyhedral) model. An interesting open issue is to invent a good
whistle and generalization strategy for a supercompiler that deals with polyhedral
configurations.

7.5 Analysis

The polyhedral model may be used for various purposes. Many useful properties
of original programs can be detected. Here are some examples: array bounds
checks, dead/unused code detection and feasible parallelism. Various questions
can be studied by means of abstract interpretation of the polyhedral model
instead of the original program.

7.6 Transformations

Initially our compiler generates a very fine grained graph in which a node cor-
responds to a single assignment, or condition expression, or it is a blender or a
filter. Thus, it is a good idea to apply a coagulation transformation, that takes,
say, a Bubble program U -graph shown in Fig.11(c), and produces a more coarse
grained data flow graph as shown in Fig.13(b). Within coagulation, several small
nodes are combined into a large single node. The body of a resulting node is a
fusion of bodies of original nodes. Data transfer between original small nodes
transforms into just variable def and use within the body of the resulting node.
This code can be efficiently evaluated on a special multiprocessor system.

In Fig.13(c) is shown the computation graph for n = 4. Each node instance is
marked with its context values. Here one can see clearly the possible parallelism.

A form of coagulation is vectorization. It involves gluing together several
nodes of the same type. This transformation is the analogue of tiling for affine
loop programs.

An inverse to coagulation, atomization, can also be useful. For example, it is
beneficial before testing equivalence.

156 Arkady V. Klimov

Fig.13. Fortran program Bubble (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

Fig.14. Fortran program Bubble2 (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

subroutine Bubble2(A,n)
 real(8) A(0:n),Z
 do i=1,n
 do j=i,1,-1
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

A(0) A(1) A(2) A(3) A(4)

4,1 4,2 4,3 4,4

3,1 3,2 3,3 A(3)

A(4)

2,1 2,2 A(2)

1,1 A(1)

A(0)
Aout(i)

{0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=j

A2

Ain(i)

{i,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{i}

i>j

{n,1}

{n,i}

j=1
j>1

{i-1,1}

i>1

{i-1,j-1}

i=1

{0}

{i,j|1≤i≤n,1≤j≤i}

{i|0≤i≤n}

{i|0≤i≤n}

Aout(i){0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=n

A2 {i,j|1≤i≤n,1≤j≤i}

Ain(i)

{i+1,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{j}

i<n

{1,1}

{i,i}

j=1
j>1

{i|0≤i≤n}

{i+1,1}

i<n

{i,j-1}

i=n

{0}

{i|0≤i≤n}

A(0) A(1) A(2) A(3) A(4)

1,1 2,2 3,3 4,4

2,1 3,2 4,3 A(3)

A(4)

3,1 4,2 A(2)

4,1 A(1)

A(0)

Fig. 13. Fortran program Bubble (a), its coagulated U -Graph (b) and the graph ex-
pansion for n = 4 (c)

7.7 Equivalence Testing

The S-graph form can be used for testing two affine programs for equivalence.
Consider, for example, another version of bubble sort program, Bubble2, shown
on Fig.14(a), its coagulated U -graph (b) and respective computation graph for
n = 4 (c). It is easy to see that the computation graphs of both programs Bubble
and Bubble2 are essentially the same: they differ only in the way of numbering
the nodes. To prove it one needs to find the affine mapping of contexts that
would make the graphs equal.

Fig.13. Fortran program Bubble (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

Fig.14. Fortran program Bubble2 (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

subroutine Bubble2(A,n)
 real(8) A(0:n),Z
 do i=1,n
 do j=i,1,-1
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

A(0) A(1) A(2) A(3) A(4)

4,1 4,2 4,3 4,4

3,1 3,2 3,3 A(3)

A(4)

2,1 4,2 A(2)

1,1 A(1)

A(0)
Aout(i)

{0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=j

A2

Ain(i)

{i,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{i}

i>j

{n,1}

{n,i}

j=1
j>1

{i-1,1}

i>1

{i-1,j-1}

i=1

{0}

{i,j|1≤i≤n,1≤j≤i}

{i|0≤i≤n}

{i|0≤i≤n}

Aout(i){0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=n

A2 {i,j|1≤i≤n,1≤j≤i}

Ain(i)

{i+1,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{j}

i<n

{1,1}

{i,i}

j=1
j>1

{i|0≤i≤n}

{i+1,1}

i<n

{i,j-1}

i=n

{0}

{i|0≤i≤n}

A(0) A(1) A(2) A(3) A(4)

1,1 2,2 3,3 4,4

2,1 3,2 4,3 A(3)

A(4)

3,1 4,2 A(2)

4,1 A(1)

A(0)

Fig. 14. Fortran program Bubble2 (a), its coagulated U -Graph (b) and the graph
expansion for n = 4 (c)

Construction of Exact Polyhedral Model 157

Generally we need a regular procedure to establish equivalence of two polyhe-
dral graphs. A good relevant procedure is presented in [22]. It allows for graphs
which have a generalized form of static control dependence graph with affine
dependences. Graph vertices are adorned by abstract operation symbols with
single output. Thus, strictly speaking within their approach our example is not
tractable: if we use coagulated form (as in Figs. 13-14) then the node function
with two outputs R1 and R2 does not meet the requirement of a single output,
and if we consider atomistic form (as in Fig.11) then the property of static con-
trol does not hold. Perhaps the first problem is just technical and the approach
can be easily generalized. However, data dependent conditions generally cannot
be easily eliminated. So, we want to generalize the approach of [22] to admit
some restricted dynamic control.

Since our work is not yet finished, we just describe here the variety of dynamic
control graphs which we want to be allowed (Section 7.1 above).

In our terms, the equivalence testing procedure deals with a pair of S-graphs.
Following [22], it starts from output nodes denoting values of output arrays, and
tries to prove that the respective values are computed by essentially the same
function compositions from values of input nodes. When a predicate condition,
p, is encountered in a source tree, the predicate value is ’requested’ and the result
is used symbolically for the selection of the source. Thus, a split appears in the
proof three due to the unknown predicate value. Now we expand the equivalence
testing procedure from [22], so as to correctly deal with such splits.

8 Related Work

In this Section we compare our approach with other attempts of building poly-
hedral models for affine programs with non-affine conditionals.

The foundations of dependence (data flow) analysis for arrays have been well
established in the 90-s by Feautrier [4–6], Pugh [18], Collard and Griebl [3, 7],
Maslov [15] and others [9, 16]. Their methods use the Omega test and Integer
Programming libraries and yield an exact solution for dependence between any
pair of read and write references in affine program. Thus in the pure affine case
our work adds almost nothing more (except that we use the resulting polyhe-
dral model further to produce a program in the dataflow computation model).
However in the case of affine programs extended with non-affine conditions (the
so-called dynamic control programs), the state-of-the-art is to yield in the gen-
eral case a fuzzy solution [6]. It is fuzzy in the sense that the source function
produces a set of possible sources, not the unique and exact source. The authors
claim that it is the best that can be done. But it seems that the claim proceeds
from assumption that the result should be represented in the form of the finite
quasi-affine solution tree (quast). And as we have seen in Section 7.4, generally
the source function can be represented as a finite or infinite quast, but it can
always be represented as a finite S-graph.

Our base affine machinery of building the exact S-graph also differs. Whereas
it is a common practice to build the polyhedral model by considering each read-

158 Arkady V. Klimov

write pair independently, our method of building a dataflow model first produces
effects and then states using only writes, and then resolves all reads against
states. It is interesting to notice a similarity between our effect/state building
process and the process of backward traversing the control flow graph presented
in [3,7] which fail, in general, to produce exact (not fuzzy) results. Both processes
are moving along the same path but in opposite directions. The authors usually
argue for moving backward noticing that the process can stop when the total
source is found (cf. also [15]). It is a good idea, and it can be incorporated into
our algorithm simply by porting it to a lazy language, e.g. to Haskell, or by
somehow emulating the laziness. In the lazy setting, the tree T will not be built
at all in applications like Seq(T, t), where t is a term (or a ⊥-less tree).

Speaking of parallelization, one must not forget about the distribution of
computations in space and time. On this subject, there are many works in which
an optimal (in terms of communications volume and load balancing) mapping
in multidimensional space and time is sought, and then on its basis an inverse
translation into a loop nest program with parallel loops is made [1, 7]. In our
dataflow computational model the knowledge of the distribution functions, al-
though not mandatory, can significantly improve the efficiency of execution. The
project of a real multiprocessor that can directly execute the dataflow model is
being developed in our institute IDPM RAS [2,14,20].

9 Conclusion

Our aim was to build the converter of a program P that belongs to a specific class
into the dataflow computation model. Thus we need not only to build the exact
and complete data flow model (which is usually referred to as the polyhedral
model and comprises of exact source functions for each read operation in the
program P), but also to invert it and thus obtain the exact use function for each
write operation. The latter representation can be used as an equivalent program
in a specific dataflow computation model, in which the maximum parallelism
inherent to program P is exhibited. At the present time, the described machinery
is implemented in a prototype translator which is written totally in the functional
language Refal, version 6 [11]. Currently, it admits as input an arbitrary affine
program extended with non-affine conditions in if-statements (provided that
unlimited computing resources are available).

However, the intermediate source graph also appears interesting. It can also
be treated as an independent semantic representation of the input program,
namely, the SRE. Partially evaluating the SRE one can use it as an exact source
function definition, that is evaluate the write statement of input program that
wrote the value being read by the given read statement. Or one can produce a
more refined form of the source function for a given read operation. Note that
all this is possible for arbitrary affine programs with non-affine conditionals.

The work was supported by Russian Academy of Sciences Presidium Program
for Fundamental Research ”Fundamental Problems of System Programming” in
2009–2013.

Construction of Exact Polyhedral Model 159

References

1. Uday Bondhugula, Muthu Manikandan Baskaran, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the polyhe-
dral model. In Laurie J. Hendren, editor, CC, volume 4959 of Lecture Notes in
Computer Science, pages 132–146. Springer, 2008.

2. V.S. Burtsev. ”Vybor novoj sistemy organizacii vypolneniya vysokoparallelnyh vy-
chislitelnyh processov, primery vozmozhnyh arhitekturnyh reshenij postroeniya su-
perEVM” (The choice of a new organization system of execution of highly-parallel
computation processes and examples of possible supercomputer architecture so-
lutions). In V.S. Burtsev, editor, Parallelizm vychislitelnyh processov i razvitie
arhitektury superEVM, pages 41–78. IVVS RAS, Moscow, 1997.

3. Jean-Francois Collard and Martin Griebl. A precise fixpoint reaching definition
analysis for arrays. In Proceedings of the 12th International Workshop on Lan-
guages and Compilers for Parallel Computing, LCPC ’99, pages 286–302, London,
UK, UK, 2000. Springer-Verlag.

4. Paul Feautrier. Parametric integer programming. RAIRO Recherche Opération-
nelle, 22:243–268, 1988.

5. Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–53, 1991.

6. Paul Feautrier. Array dataflow analysis. In Santosh Pande and Dharma P.
Agrawal, editors, Compiler Optimizations for Scalable Parallel Systems, pages 173–
219. Springer-Verlag New York, Inc., New York, NY, USA, 2001.

7. Martin Griebl. Automatic parallelization of loop programs for distributed memory
architectures. Habilitation thesis, Department of Informatics and Mathematics,
University of Passau, 2004.

8. S.A. Guda. Operations on the tree representations of piecewise quasi-affine func-
tions. ”Informatika i ee primeneniya” (Informatics and its applications), 7(1):58–
69, 2013.

9. Gautam Gupta and Sanjay V. Rajopadhye. The Z-polyhedral model. In Kather-
ine A. Yelick and John M. Mellor-Crummey, editors, Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2007, San Jose, California, USA, March 14-17, 2007, pages 237–248.
ACM, 2007.

10. Andrei V. Klimov. An approach to supercompilation for object-oriented languages:
the Java Supercompiler case study. In First International Workshop on Metacom-
putation in Russia, Proceedings. Pereslavl-Zalessky, Russia, July 2–5, 2008, pages
43–53. Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2008.

11. Ark.V Klimov. Refal-6. URL: http://refal.net/ arklimov/refal6/index.html, 2004.
12. Ark.V. Klimov. The use of selection trees for describing states in paral-

lelizing compiler. In Proceedings of All-Russian Scientific Conference Scien-
tific service in Internet, pages 238–240. Moscow, MSU Press, 2009. URL:
http://agora.guru.ru/abrau2009/pdf/238 NSSI 2009 Abrau-2009.pdf.

13. Ark.V. Klimov. Transforming affine nested loop programs to dataflow computation
model. In Ershov Informatics Conference, PSI Series, 8-th edition, Preliminary
Proceedings, June, 27 July, 1, pages 274–285, Akademgorodok, Novosibirsk, Rus-
sia, 2011.

14. Ark.V. Klimov, N.N. Levchenko, S.A. Okunev, and A.L. Stempkovsky. Supercom-
puters, memory hierarchy and dataflow computation model. Program systems:
theory and applications, 5(1):15–36, 2014.

160 Arkady V. Klimov

15. Vadim Maslov. Lazy array data-flow dependence analysis. In Hans-Juergen Boehm,
Bernard Lang, and Daniel M. Yellin, editors, Conference Record of POPL’94: 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, USA, January 17-21, 1994, pages 311–325. ACM Press, 1994.

16. Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact
data dependence analysis. In David S. Wise, editor, Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages 1–14. ACM, 1991.

17. Andrei P. Nemytykh, Victoria Pinchik, and Valentin Turchin. A self-applicable
supercompiler. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evalua-
tion. Dagstuhl Castle, Germany, February 1996, volume 1110 of Lecture Notes in
Computer Science, pages 233–252. Springer-Verlag, 1996.

18. William Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Joanne L. Martin, editor, SC, pages 4–13. IEEE
Computer Society / ACM, 1991.

19. Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive supercom-
piler. Journal of Functional Programming, 6(6):811–838, 1996.

20. A.L. Stempkovsky, N.N. Levchenko, S.A. Okunev, and V.V. Tsvetkov. Paral-
lel dataflow computing system the further development of architecture and the
structural organization of the computing system with automatic distribution of
resources. Informatsionnye tekhnologii, (10):2–7, 2008.

21. Valentin F. Turchin. Program transformation by supercompilation. In Harald
Ganzinger and Neil D. Jones, editors, Programs as Data Objects, volume 217 of
Lecture Notes in Computer Science, pages 257–281. Springer, 1985.

22. Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking
of static affine programs using widening to handle recurrences. In Ahmed Bouajjani
and Oded Maler, editors, CAV, volume 5643 of Lecture Notes in Computer Science,
pages 599–613. Springer, 2009.

23. V.V. Voevodin and Vl.V. Voevodin. ”Parallel’nyje vychislenija” (Parallel compu-
tations). BKhV-Peterburg, St. Petersburg, 2004.

	Introduction
	Some Formalism
	Building Statement Effect
	Statement Effect and its Evaluation
	Graph Node Structure
	Processing Non-affine Conditionals

	Evaluation and Usage of States
	Computing States
	Resolving Array Accesses

	Building the Dataflow Model
	Building U-graph by Inverting S-graph: Affine Case
	Inverting S-graph for Programs with Non-affine Conditionals

	Examples
	Properties and Usage of Polyhedral Model
	General Form of Dataflow Graph
	Using the S-graph as a Program
	Computing the U-graph in the Dataflow Computation Model
	Extracting Source Functions from S-graph
	Analysis
	Transformations
	Equivalence Testing

	Related Work
	Conclusion

