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Abstract. Code inspections in the upcoming release of IntelliJ IDEA
take into account how binary Java libraries used in a project deal with
null references. For this purpose Java libraries are annotated with results
of nullness analysis under the hood. The paper reveals one of several non-
trivial technical aspects of nullness analysis of Java binaries performed
by IDEA: supercompilation over abstract values. A case study project
Kanva-micro – a tool for inference of @NotNull method parameters –
is used to illustrate this aspect step-by-step. A method parameter is
annotated by Kanva-micro as @NotNull if the method cannot complete
normally when null is passed to this parameter. The source code of
Kanva-micro’s core is provided and explained in details. The paper may
also serve as a tutorial on using supercompilation methods for program
analysis.

1 Introduction

This paper starts a series of tutorial papers explaining details of how nullness
analysis of Java bytecode is implemented in the upcoming IntelliJ IDEA 14
release. The papers are organized around two self-sufficient ready-to-run tutorial
projects:

– The Kanva-micro project [8] focuses on the essence of the method (super-
compilation over abstract values) at the cost of simplifications.

– The Faba project [4] is about how this method may be implemented in a
production system.

The current paper describes the Kanva-micro project step-by-step.

1.1 Nulls in Java, richer type systems and the problem of
interoperability

The majority of mainstream programming languages (including Java program-
ming language) allow null references (null in Java). Dereference of null results
into a runtime error. Tony Hoare, the creator of null, has stated that the null

was “the billion dollar mistake” in the language design.
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Ironically, compile-time checks performed by compilers of statically typed
languages are to guarantee the absence of runtime errors if code compiles, and
null pointer errors are not covered by these checks in major mainstream lan-
guages.

Dereference of null results into NullPoiterException in Java.
There are practical alternatives to enjoy null safety when programming for

JVM:

– Migrate to alternative JVM language with nullable types such as Kotlin [9]
or Ceylon [2].

– Enrich Java code with nullity annotations like @NotNull and @Nullable

and use additional tools to check such annotations. There are several tools
understanding nullity annotations: Eclipse Java compiler with additional
null analysis [3], null analysis inspections in IntelliJ IDEA [6], the Checker
framework [10].

Anyway, a Java programmer enjoys null safety only when working in a new
richer type system. When there is a need to use existing Java libraries, the
problem of null references appears on the boundary of two worlds. There is no
clear practical way to make use of Java libraries completely null safe. However,
it is possible to infer some nullity information automatically to make use of Java
libraries safer.

1.2 The task

Some null analysis tools, including IntelliJ IDEA and the Checker framework, al-
low to use external annotations that are stored separately from library bytecode.
The Kotlin compiler allows to specify external annotations as well. So inference
of such annotations is of practical usage.

Kanva-micro [8] focuses on inference of @NotNull annotations for method
parameters. A method parameter is annotated as @NotNull if in any situation
when null is passed to this parameter the method cannot complete normally.
Practically, it means that an author of this library method doesn’t expect null
to be passed to this parameter. From a client’s point of view this is the same as
the author put explicit @NotNull annotation in original source code.

The task of Kanva-micro is to automatically infer such external annotations
for Java libraries. The phrase “in any situation” in the previous paragraph is
significant: inferred annotations should not forbid to use a library. A @NotNull

annotation is considered incorrect if under some conditions when null is passed
to this parameter, the method completes normally.

There are no problems with the following @NotNull annotation: all possible
executions result in NullPointerException when view is null.

1 void loadConfig(@NotNull View view) {
2 File f = getConfigFile();
3 if (f != null) {
4 view.loadConfigFromFile(f);
5 } else {
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6 view.loadDefaultConfig();
7 }
8 }

However, the next @NotNull annotation is incorrect because this method
completes normally when getConfigFile() returns null and view is null.
1 void saveConfig(@NotNull View view) {
2 File f = getConfigFile();
3 if (f != null) {
4 view.saveConfigToFile(f);
5 }
6 }

1.3 Handling of asserts

Many real-world Java libraries check that parameter is not null in the following
way:
1 if (array == null) {
2 throw new IllegalArgumentException("array is null");
3 }

Sometimes such checks may be implicit:
1 if (!(object instanceof Serializable)) {
2 throw new IllegalArgumentException("object is not Serializable");
3 }

So to handle all these checks as well and infer @NotNull for corresponding
parameters is desirable.

1.4 Inference of a subset of @NotNull annotations

The task to infer all correct @NotNull annotations in general case is undecidable.
The root cause of undecidability of this task is undecidability of the subtask to
detect whether a certain execution path in a program is reachable.

So, the practical task is to infer as much correct @NotNull annota-
tions for method parameters as possible.

Kanva-micro assumes that all branches of conditionals that do not directly
depend on nullity of parameters are reachable. Under this assumption annota-
tions inferred by Kanva-micro are sound (since a superset of all possible execu-
tion paths is considered). But some annotations are lost, so Kanva-micro infers
a subset of all correct annotations.

1.5 Algorithm presentation

Kanva-micro relies heavily on ASM library which is “an all purpose Java byte-
code manipulation and analysis framework” [1, 12]. ASM library is de-facto a
standard tool for Java bytecode processing in many production projects. The
main part of Kanva-micro is quite high-level, since all low-level boilerpate may
be gracefully delegated to ASM library. It turns out that it is clearer and easier
to present the technical details of Kanva-micro in well-established ASM terms
rather than creating a special complicated formalism for simple things. So all
technical details of the core logic of Kanva-micro are described just in listings.
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1.6 Outline

Section 2 describes the core ingredients of the algorithm and also provides a nec-
essary background about Java bytecode internals, section 3 goes into main tech-
nical details of the implementation, section 4 discusses experimental results of
annotating some Java libraries, the cost of simplifications made in Kanva-micro
and sketches how Faba overcomes these simplifications and section 5 mentions
related work.

2 Algorithm

Kanva-micro performs intra-procedural analysis: each method is analyzed sepa-
rately. Also Kanva-micro considers a general case: a Java library may be already
partially annotated.

The technical side of the problem can be easily formulated without going into
all subtle details of JVM semantics (these details are easily abstracted away).
This section deals with Java bytecode from the point of view of nullness analysis
and describes the algorithm of Kanva-micro informally.

2.1 A crash course of Java bytecode

Java source code comprises of a set of classes, each class in turn comprises of
a set of fields and methods. A method in some sense is a “unit of execution”.
Java virtual machine is a stack virtual machine. A chain of method invocations
is organized traditionally via call stack (composed of frames). Execution of a
method is associated with a frame which has a storage for variables defined in
this methods and also an operand stack. On a method invocation a current frame
is pushed on the call stack (with a return address), a new frame is created and
initialized with respect to passed arguments, a control is passed to instructions of
called method. When execution of the method is completed, the previous frame
is popped from the stack, a return value is put on the operand stack and control
is transferred to restored return address.

There are more than 200 Java bytecode instructions, however, only a rela-
tively small subset of them may cause null pointer error. Here is a list of such
bytecode instructions with descriptions when there may be a NPE (NullPointer-
Exception) during execution of this instruction.

– GETFIELD, PUTFIELD – load/store a field of an object. Error if the corre-
sponding object (an owner of the field) is null.

– ARRAYLENGTH – get the length of an array. Error if the corresponding array
is null.

– IALOAD, LALOAD, FALOAD, DALOAD, AALOAD, BALOAD, CALOAD, SALOAD – load
an int, long, float, double, reference, boolean, char, short value from an array.
Error if the corresponding array is null.
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– IASTORE, LASTORE, FASTORE, DASTORE, AASTORE, BASTORE, CASTORE, SA-

STORE – store an int, long, float, double, reference, boolean, char, short value
in an array. Error if the corresponding array is null.

– MONITORENTER – synchronization by entering monitor of an object. Error if
the corresponding object (monitor’s owner) is null.

– INVOKESTATIC – call of a static class method (with arguments). Error if a
null argument is passed into a parameter annotated as @NotNull.

– INVOKEVIRTUAL, INVOKESPECIAL, INVOKEINTERFACE – call of an instance
method of an object. Error if the corresponding object is null or a null

argument is passed into a parameter annotated as @NotNull.
– ATHROW – throw an exception. The case when an exceptions is thrown as a

result of comparison of a parameters with null corresponds to assertions.

2.2 The core idea - inspection of process graph

Kanva-micro performs analysis for each method parameter of a reference type.
Thus, for a method with three reference parameters three independent analyses
will be run. The simple core idea is to consider all possible executions paths
inside the method assuming that a parameter of interest is null. If none of these
executions paths completes normally, the parameter is annotated as @NotNull.
We are going to build a process tree [13] and inspect each branch of this tree for
errors caused by null value of the parameter of interest. Kanva-micro doesn’t try
to build a perfect process tree – trees built by Kanva-micro may have unreachable
branches. However, the existence of such branches doesn’t affect the soundness
of inference, but simplifies inference a lot.

It is sufficient to abstract away concrete values of local variables and operands
in the operand stack in the current frame (corresponding to execution of a
method being analyzed) and consider just two abstract values:

– ParamValue – a value passed into parameter of interest.
– BasicValue – any value (there is no information whether it corresponds to

a parameter or not).

Obviously, ParamValue ⊆ BasicValue. With ASM library it is easy to get
a control flow graph for a method. To build all branches of the process tree it
is enough to explicitly unfold all possible paths in this control flow graph. Of
course, if there are cycles in the original control flow graph, then process tree
will be infinite in general case. However, there is a simple folding strategy to
fold such process tree into a finite process graph. For the purposes of inference
it will be enough just to inspect resulting process graph.

2.3 Configurations and folding strategy

Nodes in a process tree are labeled with configurations. Kanva-micro represents
a configuration as a pair of a program point and a store of abstract values. More
precisely, the configuration is a pair (insnIndex, frame):
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– insnIndex – an index of a current instruction, each method is represented
as a finite sequence of bytecode instructions,

– frame – a store (list) of local variables and stack operands, where abstract
values are of two kinds: ParamValue and BasicValue. For each program
point the size of the store is fixed and known in advance.

A nice fact is that a number of all possible configurations of a method process
tree is finite. So, there is a natural folding strategy: during construction of the
process graph to fold a current configuration to a more general configuration in
the history of the current branch (when a current configuration is an instance
of some previous configuration). Folding is performed when c ⊆ c′, where c is
a current configuration and c′ is a previous configuration. The relation c ⊆ c′

holds when instruction indices are the same and corresponding values (stored in
slots with the same index i) are related as vi ⊆ v′i. Moreover, there is no need
to construct a traditional back folding edge. So, when opportunity for folding is
detected, development of the current branch of a process tree is stopped and the
current node is just marked as a “cycle” leaf. Taken this into account, in what
follows terms process tree, process graph and graph of configurations are used
interchangeably.

A process graph (or a graph of configurations) built in this way is similar in a
spirit to one built during supercompilation [18]. There are two main differences
from traditional supercompilation:

– Driving (unfolding of a control flow graph) is done over abstract values.
– No residual program is generated, but the constructed process graph is used

for a quite specific task: approximation of a method execution in the per-
spective of a possible dereference of a null parameter.

2.4 Tracking dereferences, keeping only interesting branches

The process graph is constructed to answer the following question:

Let a certain parameter be null, do all possible executions of the method
result in errors caused by this null?

If the answer is “yes”, it is correct to annotate this parameter as @NotNull.
So, if there is a conditional of the form

1 if (param == null) {
2 ...
3 } else {
4 ...
5 }

there is no interest in the else-branch and no development of such branch is
done in the constructed process tree. A subtree in a process tree corresponding to
then-branch is a null-aware subtree (the intuition is that a programmer consider
a case when a parameter is null explicitly).

During driving step, when an instruction is executed over abstract values,
it is possible to detect situations listed in subsection 2.1 when dereference of
ParamValue happens. Such transitions are said to be dereferencing transitions.
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2.5 Approximating method execution

So, using described folding strategy, tracking dereferences of a parameter and
keeping only interesting branches a finite process tree is developed. Additional
information used for nullness analysis is stored in nodes and edges:

– Some leaves are marked as cycle leaves.
– Some edges are marked as dereferencing ones.
– Some subtrees are marked as null-aware ones.

Based on this labeling information, another labels (“nullness labels”) describ-
ing a method behavior are produced in a bottom-up manner. First, leaves of the
process tree are labeled with following values:

– RETURN – a leaf contains a return instruction and no dereferencing edge was
taken on the path from the root.

– NPE – a dereferencing edge was taken on the path from the root, or a leaf’s
configuration points to a ATHROW instruction and this leaf belongs to a null-
aware subtree.

– ERROR – a leaf’s configuration corresponds to a ATHROW instruction but this
leaf doesn’t belong to a null-aware subtree.

– CYCLE – a leaf is a cycle leaf.

Next, nullness labels for other nodes are inferred from labels of its children.
If a node has a single child node, then label is just propagated from the child
to the parent. If a node has more child nodes then child labels are combined
according to the following table:

RETURN NPE ERROR CYCLE

RETURN RETURN RETURN RETURN RETURN

NPE RETURN NPE NPE NPE

ERROR RETURN NPE ERROR ERROR

CYCLE RETURN NPE ERROR CYCLE
Finally, the root node is labeled. If it is labeled with NPE, then the corre-

sponding parameter is annotated as @NotNull.
A nullness label in the root node is in a sense an approximation of method

execution with the following meaning:

– RETURN – there is a possible execution path which completes normally and
no proof that a given parameter is dereferenced on this path was found.

– NPE – all possible execution paths result in an exception and there is at least
one path when this exception is caused by null value of parameter.

– ERROR – all possible execution paths result in an exception but there is no
information whether or not such error is caused by null value of parameter.

– CYCLE – just a loop.

The reason why NPE and ERROR labels are distinguished is that there may be
a method which just throws an exception without checking parameters like in
the following code:
1 public void log(String msg) {
2 throw new UnsupportedOperationException();
3 }
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1 package kanva.analysis
2
3 import org.objectweb.asm.tree.*
4 import org.objectweb.asm.tree.analysis.*
5 import kanva.declarations.*
6 import kanva.graphs.*
7
8 fun buildCFG(method: Method, methodNode: MethodNode): Graph<Int> =
9 ControlFlowBuilder().buildCFG(method, methodNode)

10
11 private class ControlFlowBuilder(): Analyzer <BasicValue >(BasicInterpreter()) {
12 private class CfgBuilder: GraphBuilder <Int, Int, Graph<Int>>(true) {
13 override fun newNode(data: Int) = Node<Int>(data)
14 override fun newGraph() = Graph<Int>(true)
15 }
16
17 private var builder = CfgBuilder()
18
19 fun buildCFG(method: Method, methodNode: MethodNode): Graph<Int> {
20 builder = CfgBuilder()
21 analyze(method.declaringClass.internal, methodNode)
22 return builder.graph
23 }
24
25 override protected fun newControlFlowEdge(insn: Int, successor: Int) {
26 val fromNode = builder.getOrCreateNode(insn)
27 val toNode = builder.getOrCreateNode(successor)
28 builder.getOrCreateEdge(fromNode, toNode)
29 }
30 }

Fig. 1. Construction of a control-flow graph

2.6 Correctness

Correctness of inference is almost obvious – a parameter is assumed to be null

and all possible execution paths are considered. A parameter is annotated as
@NotNull only if all execution paths result in an exception, which, in turn, satis-
fies the requirement that the method cannot complete normally when parameter
is null.

3 Implementation

Initially this task has arisen in the context of development of the Kotlin program-
ming language pursuing safer interoperability of Kotlin and Java. So, Kanva-
micro is coded in Kotlin. The implementation is rather concise since many
lower-level things are delegated to ASM library [12].

Technically, the full cycle of annotating a Java library consists of following
stages:

1. Context construction. Context is a list of all signatures, their bytecode in
ASM representation and a storage for inferred annotations. At the next
steps inferred annotations are put in the context. Inferred annotations can
be fetched from the context by a method signature.
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1 class ParamValue(tp: Type?): BasicValue(tp)
2 class InstanceOfCheckValue(tp: Type?): BasicValue(tp)
3 class Configuration(val insnIndex: Int, val frame: Frame<BasicValue >)
4 fun startConfiguration(
5 method: Method, methodNode: MethodNode ,paramIndex: Int
6 ): Configuration {
7 val frame = Frame<BasicValue >(methodNode.maxLocals , methodNode.maxStack)
8 val returnType = Type.getReturnType(methodNode.desc)
9 val returnValue =

10 if (returnType == Type.VOID_TYPE) null else BasicValue(returnType)
11 frame.setReturn(returnValue)
12 val args = Type.getArgumentTypes(methodNode.desc)
13 var local = 0
14 if (!method.access.isStatic()) {
15 val thisValue=
16 BasicValue(Type.getObjectType(method.declaringClass.internal))
17 frame.setLocal(local++, thisValue)
18 }
19 for (i in 0..args.size - 1) {
20 val value =
21 if (i == paramIndex) ParamValue(args[i]) else BasicValue(args[i])
22 frame.setLocal(local++, value)
23 if (args[i].getSize() == 2)
24 frame.setLocal(local++, BasicValue.UNINITIALIZED_VALUE)
25 }
26 while (local < methodNode.maxLocals)
27 frame.setLocal(local++, BasicValue.UNINITIALIZED_VALUE)
28 return Configuration(0, frame)
29 }

Fig. 2. Construction of a start configuration

2. Construction of dependency graph, calculation of strongly connected com-
ponents. What described in the previous section is just one iteration of the
inference cycle. Annotations of different methods may depend on each other,
since inference of annotations for a given method relies on annotations for
methods called from the current method. So, annotating is an iterative pro-
cess. To minimize the number of iterations, the graph of dependencies be-
tween methods is constructed, strongly connected components are calculated
and then sorted in reverse topological order.

3. Iterative inference within a single component. All members of a component
are put in a queue. Then members are pulled from this queue one by one
and the described algorithm is run for each of not yet annotated
parameters. If a new annotation is inferred, dependent methods are added
into the queue. Obviously, this process converges.

Steps 1 and 2 are rather trivial and implemented in a standard way. An
interested reader may consult the full source code for details. However, a single
iteration of inference is rather interesting from a technical point of view. And
this part heavily relies on ASM library.

First, a method’s control flow graph is built. ASM provides a number of
utilities for bytecode analyses. One of such utilities is Analyzer. Analyzer

performs basic bytecode analyses given a semantic bytecode interpreter. Also
ASM library provides a simple interpreter BasicInterpreter. Analyzer and
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1 class ParamSpyInterpreter(val context: Context): BasicInterpreter() {
2 var dereferenced = false
3 fun reset() {
4 dereferenced = false
5 }
6
7 public override fun unaryOperation(
8 insn: AbstractInsnNode , value: BasicValue
9 ): BasicValue? {

10 if (value is ParamValue)
11 when (insn.getOpcode()) {
12 GETFIELD , ARRAYLENGTH , MONITORENTER ->
13 dereferenced = true
14 CHECKCAST ->
15 return ParamValue(Type.getObjectType((insn as TypeInsnNode).desc))
16 INSTANCEOF ->
17 return InstanceOfCheckValue(Type.INT_TYPE)
18 }
19 return super.unaryOperation(insn, value);
20 }
21
22 public override fun binaryOperation(
23 insn: AbstractInsnNode , v1: BasicValue , v2: BasicValue
24 ): BasicValue? {
25 if (v1 is ParamValue)
26 when (insn.getOpcode()) {
27 IALOAD, LALOAD, FALOAD, DALOAD, AALOAD,
28 BALOAD, CALOAD, SALOAD, PUTFIELD ->
29 dereferenced = true
30 }
31 return super.binaryOperation(insn, v1, v2)
32 }
33
34 public override fun ternaryOperation(
35 insn: AbstractInsnNode , v1: BasicValue , v2: BasicValue , v3: BasicValue
36 ): BasicValue? {
37 if (v1 is ParamValue)
38 when (insn.getOpcode()) {
39 IASTORE, LASTORE, FASTORE, DASTORE,
40 AASTORE, BASTORE, CASTORE, SASTORE ->
41 dereferenced = true
42 }
43 return super.ternaryOperation(insn, v1, v2, v3)
44 }
45
46 public override fun naryOperation(
47 insn: AbstractInsnNode , values: List<BasicValue >
48 ): BasicValue? {
49 if (insn.getOpcode() != INVOKESTATIC)
50 dereferenced = values.first() is ParamValue
51 if (insn is MethodInsnNode) {
52 val method = context.findMethodByMethodInsnNode(insn)
53 if (method != null && method.isStable())
54 for (pos in context.findNotNullParamPositions(method))
55 dereferenced = dereferenced || values[pos.index] is ParamValue
56 }
57 return super.naryOperation(insn, values);
58 }
59 }

Fig. 3. Semantic interpreter for driving and tracking dereference of ParamValue

BasicInterpreter are used by Kanva-micro to construct a method’s control
flow graph. How this is done is shown in a listing in Figure 1. The function
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1 class NullParamSpeculator(val methodContext: MethodContext , val pIdx: Int) {
2 val method = methodContext.method
3 val cfg = methodContext.cfg
4 val methodNode = methodContext.methodNode
5 val interpreter = ParamSpyInterpreter(methodContext.ctx)
6 fun shouldBeNotNull(): Boolean = speculate() == Result.NPE
7 fun speculate(): Result = speculate(
8 startConfiguration(method, methodNode , pIdx), listOf(),false, false
9 )

10
11 fun speculate(
12 conf: Configuration , history: List<Configuration >,
13 alreadyDereferenced: Boolean, nullPath: Boolean
14 ): Result {
15 val insnIndex = conf.insnIndex
16 val frame = conf.frame
17 if (history.any{it.insnIndex==insnIndex && isInstanceOf(frame, it.frame)})
18 return Result.CYCLE
19 val cfgNode = cfg.findNode(insnIndex)!!
20 val insnNode = methodNode.instructions[insnIndex]
21 val (nextFrame , dereferencedHere) = execute(frame, insnNode)
22 val nextConfs =
23 cfgNode.successors.map{Configuration(it.insnIndex , nextFrame)}
24 val nextHistory = history + conf
25 val dereferenced = alreadyDereferenced || dereferencedHere
26 val opCode = insnNode.getOpcode()
27 return when {
28 opCode.isReturn() && dereferenced -> Result.NPE
29 opCode.isReturn() -> Result.RETURN
30 opCode.isThrow() && dereferenced -> Result.NPE
31 opCode.isThrow() && nullPath -> Result.NPE
32 opCode.isThrow() -> Result.ERROR
33 opCode == IFNONNULL && Frame(frame).pop() is ParamValue ->
34 speculate(nextConfs.first(), nextHistory , dereferenced , true)
35 opCode == IFNULL && Frame(frame).pop() is ParamValue ->
36 speculate(nextConfs.last(), nextHistory , dereferenced , true)
37 opCode == IFEQ && Frame(frame).pop() is InstanceOfCheckValue ->
38 speculate(nextConfs.last(), nextHistory , dereferenced , true)
39 opCode == IFNE && Frame(frame).pop() is InstanceOfCheckValue ->
40 speculate(nextConfs.first(), nextHistory , dereferenced , true)
41 else ->
42 nextConfs.map{
43 speculate(it, nextHistory , dereferenced , nullPath)
44 } reduce{ r1, r2 -> r1 join r2}
45 }
46 }
47
48 fun execute(
49 frame: Frame<BasicValue >, insnNode: AbstractInsnNode
50 ): Pair<Frame<BasicValue >, Boolean> = when (insnNode.getType()) {
51 AbstractInsnNode.LABEL, AbstractInsnNode.LINE, AbstractInsnNode.FRAME ->
52 Pair(frame, false)
53 else -> {
54 val nextFrame = Frame(frame)
55 interpreter.reset()
56 nextFrame.execute(insnNode, interpreter)
57 Pair(nextFrame , interpreter.dereferenced)
58 }
59 }
60 }

Fig. 4. Inference of @NotNull annotation
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buildCFG builds a directed graph whose nodes are labeled with indices of in-
structions of a method and edges correspond to transitions between instructions.

BasicValue introduced in subsection 2.2 is already implemented in ASM.
The class Frame provided by ASM corresponds to a frame holding abstract val-
ues. BasicInterpreter already implements execution of bytecode instructions
over BasicValues is the desired way. Kanva-micro extends BasicInterpreter

in order to distinguish between BasicValue and ParamValue. Notions of Param-
Values and configurations are depicted in a listing in Figure 2. Class Instance-
OfCheckValue is for tracking instanceof checks. The function startConfigu-

ration presented in Figure 2 creates a start configuration (placed in the root
node of a process tree) for a given method and an index of a parameter being
analyzed. The main logic of startConfiguration is that all values in frame
except a given parameter are initialized with BasicValue.

BasicInterpreter provided by ASM already has almost everything needed
for driving. The missed parts are:

– Tracking of dereferencing of ParamValue.
– Handling of instanceof checks of ParamValue.
– Knowledge about already inferred annotations (to detect dereferencing).
– Propagation of ParamValue during class casting.

All these parts are implemented in class ParamSpyInterpreter shown in
Figure 3. The most interested lines are 52-56: if the current parameter of inter-
est is passed as an argument to another parameter (of some method) already
annotated as @NotNull, it is handled in the same way as dereferencing of the
current parameter.

The main analysis is implemented in the class NullParamSpeculator shown
in Figure 4. NullParamSpeculator holds a methodContext, which contains ev-
erything needed for inference, and an index of a parameter being annotated. The
method shouldBeNotNull returns true if an approximation of method execu-
tion is NPE. A process tree is not constructed explicitly here, since it is enough
to get a nullness label for the root configuration. The call to speculate(conf,

history, alreadyDereferenced, nullPath) results in one of RETURN, NPE,
ERROR, CYCLE nullness labels. The call arguments are:

– conf – the current configuration (for which nullness label should be calcu-
lated),

– history – a list of already encountered configurations (for folding),
– alreadyDereferenced – whether dereferencing was already detected on a

path from the root to current configuration,
– nullPath – if nullPath is true, it means that current configuration belongs

to a null-aware subtree.

Let’s iterate through the code of the speculate method line-by-line.
If there is a more general configuration in the history, folding is performed,

the corresponding label is CYCLE. Otherwise, the current instruction is executed –
the execute method returns a pair of a next frame and a boolean whether there
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was dereferencing of the parameter during instruction execution. If the current
instruction is a return or throw instruction, then a nullness label is calculated
based on the dereferenced and nullPath flags. Otherwise, if the current in-
struction is IFNULL or IFNONNULL and a value being tested is ParamValue (it
corresponds to conditionals if (param == null) and if (param != null)), a
corresponding null-aware subtree is processed (the nullPath flag to true).

The same logic applies to handling of if (param instanceof SomeClass)

conditional. When param is null, this check results in false. The implemen-
tation is a bit verbose since there is no special instruction in Java bytecode
for such conditional and this check is compiled into the sequence of two in-
structions: INSTANCEOF and IFEQ. The INSTANCEOF instruction is handled by
ParamSpyInterpreter: if an operand is ParamValue, then a special Instance-
OfCheckValue value is produced. The IFEQ instruction is handled inside the
speculate method: when the current instruction is IFEQ and an operand on the
top of the stack is InstanceOfCheckValue, then the if (param instanceof

SomeClass) construction is recognized and only a branch that corresponds to
null parameter is considered. (Handling of the IFNE instruction corresponds to
if (!(param instanceof SomeClass)) construction.)

Otherwise, nullness labels for child configurations are calculated and com-
bined. This concludes the discussion of the implementation.

4 Discussion

In a sense, Kanva-micro performs domain-specific supercompilation [15] of Java
bytecode, abstracting away almost all aspects of operational semantics not as-
sociated with nullness analysis. Because of these abstractions, representation of
configurations becomes extremely simple – just a bit vector. The interesting fact
is that configurations are so generalized in advance, that no traditional online
generalization is required to ensure termination of supercompilation. But this
comes for the price that a constructed process tree of method execution is not
perfect in a general case.

4.1 The cost of simplifications

The main point of the Kanva-micro project is simplicity, focusing on the essence
of the method and ignoring some technical details for the sake of brevity of
presentation. However, there are two significant drawbacks that simplifications
that make Kanva-micro not ready for production use.

Exponential complexity The main drawback of Kanva-micro is that this
algorithm is of exponential complexity in general case. This complexity may
exploded by a method with sequential conditionals.

1 if ( ... ) {
2
3 }
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4 if ( ... ) {
5
6 }
7 if ( ... ) {
8
9 }

If there are n sequential conditionals in a method, then process tree constructed
by Kanva-micro will contain 2n branches in the worst case.

Memory usage The bytecode of a library method is processed by Kanva-
micro more than one time: the first time when a graph of dependencies between
methods is constructed and then during iterative inference of annotations inside
a strongly connected component of the graph of dependencies. Loading and
parsing the bytecode of a method from scratch every time without additional
processing of binaries is problematic, so Kanva-micro loads all library bytecode
into memory at once in advance. This means that the amount of memory required
by Kanva-micro is proportional to the size of a library, which is not acceptable
from a practical point of view.

4.2 The Faba project

The Faba project [4] overcomes mentioned drawbacks by smart handling of the
library bytecode. Faba processes a binary library in two stages:

1. Indexing a library: the result of indexing is a set of equations over a lattice.
2. Solving equations.

At the first stage each method is processed exactly once. After the bytecode
for a method is indexed, it is unloaded. Equations are not memory consuming,
so the problem of memory usage disappears.

During indexing a method, Faba exploits memoization and sharing facilities.
The main observation is that in a sequence of conditionals in real libraries the
majority of conditionals are irrelevant to nullness analysis (do not test a param-
eter for nullity). Driving of both branches of “irrelevant” conditions result in
most cases in the same configurations in two nodes of the process tree, these
nodes are joined. In general case Faba is also of exponential complexity, but this
exponential complexity is not exploded by real-world libraries.

Both problems may be tamed in naive but simple ways: the memory usage
problem may be solved via unloading the bytecode for a method after its byte-
code is processed by the current iteration and loading it from the scratch from
the disk. A simple ad-hoc way to mitigate exponential complexity of Kanva-
micro is just to limit the number of processed configurations. When this limit is
reached, analysis for the method stops and infers nothing.

4.3 Experiments and more details

The Kanva-micro project [8] provides utilities to annotate popular Java libraries
(available as Maven artifacts) in a simple way. The project page also has a set of
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experimental result for running inference with different settings. The interesting
fact is that limiting the number of processed configurations by a reasonable num-
ber (say, by 5000) Kanva-micro infers about 95 percent of annotations inferred
by Faba in comparable time.

An interested reader may also consult the Kanva-micro’s wiki for more more
technical details related to implementation and experiments.

5 Related work

Initially Kanva-micro was developed in the context of JetBrains KAnnotator
tool [7]. KAnnotator is based on abstract interpretation and infers different null-
ness annotations (for method parameters and for method results) in a single pass.
So, abstract domains and logic of approximations in KAnnotator is much more
complex that of Kanva-micro.

On the contrary, Kanva-micro is specialized to infer just one type of nullness
annotations. The Faba project infers not only @NotNull annotations for method
parameters, but also @NotNull annotations for method results and @Contract

annotations [5]. All Faba inferencers are quite similar and based on supercom-
pilation but have very different abstract domains, logic of approximations and
logic for sharing configurations.

The pragmatic observation from developing Kanva-micro and Faba is that it
is more practical to have a set of specialized inferencers which run independently
and may reuse results of each other via context rather than a tool that runs
different analyses together in a single pass.

The main goal of KAnnotator, Kanva-micro and Faba is to annotate existing
Java libraries for safer usage. Inference of annotations happens on bytecode level,
no source is required.

Surprisingly, as we can judge from existing literature, this task was not ad-
dressed in academia from practical point of view before. The closest existing
tool is NIT [14]. NIT infers @NotNull and @Nullable annotations but these
annotations have different semantics. NIT considers Java bytecode as a single
application and starts analysis from so called entry points. A @NotNull param-
eter annotation in NIT setting means that during execution of an application
null will never be passed into this parameter, other annotations have similar se-
mantics – they describe which values may be passed to parameters and returned
from methods during executions of a specific application. NIT doesn’t consider
bytecode at library level. NIT motivation is that such analysis maybe used to
detect bugs in an applications. Another possible application of NIT annotations
is bytecode optimizations – removing unnessecary checks from bytecode.

Another tool that infers nullness information from bytecode is Julia [17].
Again, this information is inferred with the goal of analysis – the main applica-
tion is to generate a set of warnings about possible null pointer exceptions.

There is a tool called JACK [11,16] which verifies Java bytecode with respect
of @NotNull annotations, ensuring that null will never be passed to a @NotNull

variable or parameter.
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Note that Kanva-micro annotations are semantic-based. There is a lot of
works devoted to checking and inferencing nullness annotations in source code,
but these annotations have different semantics, since they may forbid some ex-
ecutions paths not resulting in null pointer exception. Also many source-based
annotation inferencers require an additional user’s input.
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