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Abstract. Multi-result supercompilation is a recent and promising gen-
eralization of classical supercompilation. One of its goals is to permit easy
construction of different supercompilers from a reusable top-level algo-
rithm and independently implemented components for driving, folding,
etc. The problem of preservation of semantics by multi-result supercom-
pilers has not yet been studied in detail. So, while the implementation
of a new multi-result supercompiler is simplified by the high degree of
modularity, its verification is not. To alleviate this burden, we search for
a set of sufficient conditions on the basic building blocks (such as driving
or folding), which – if met – can be plugged into general theorems, to
ensure supercompiler correctness. If the proposed approach proves suc-
cessful, it will make multi-result supercompiler verification as easy and
modular as the implementation itself.

1 Introduction

Multi-result supercompilation [10,11] is a recent generalization of classical super-
compilation [18,19]. One of its key insights is to permit generalization to happen
at any moment, and to consider and collect the different graphs of configurations
arising from different choices about generalization. Recall that in classical super-
compilation generalization is only applied when the whistle blows and folding
is not possible. Paradoxically it turns out that in certain situations early gen-
eralization can lead to an optimal result, which cannot be obtained using the
classical approach [8].

Another advantage of multi-result supercompilation (MRSC1) is that, from
the beginning, it was designed in a modular way, as follows:

– a generic high-level algorithm, which is largely independent of the particular
choice of object language;

– a small set of primitive operations, which encapsulate the language-specific
parts of the supercompiler algorithm.

1 The abbreviation MRSC is usually reserved for the original implementation in Scala,
“The MRSC Toolkit”. We take the liberty to use it also for multi-result supercompi-
lation in general, for brevity.



178 Dimitur Nikolaev Krustev

This modularity allows the programmer to easily create supercompilers for dif-
ferent object languages, including highly specialized ones for particular DSLs [8].
A further refinement of modularity is present in a recent Agda formalization of
MRSC [4], which is based on a more streamlined set of primitive operations.
Moreover, the Agda formalization uses a “big-step” definition of MRSC + whis-
tles based on inductive bars [3], which further simplify the main data structures
and algorithms. The main goal of Grechanik et al. [4] is to formalize a more com-
pact representation of the whole set of results produced by MRSC, to prove this
representation correct w.r.t. the original representation (simple list of graphs),
and to show that many useful operations (filtering the set of results, selecting an
optimal result by certain criteria) can be directly and more efficiently performed
on the compact representation. The formalization of object language semantics
and verification of the preservation of this semantics by MRSC is beyond the
scope of that paper.

As verification of semantics preservation by supercompilers is an interesting
and practically useful topic in itself [12–14], the approach we describe here aims
to fill this gap, and to propose a way for verifying semantics preservation of
supercompilers based on big-step MRSC. We take the Agda formalization of
Grechanik et al. [4] as a starting point (ported to Coq) and augment it with:

– a set of primitives for describing the semantics of the object language (Sec.
3)

– based on these primitives:
• a formal semantics of trees of configurations produced by multi-result

driving + generalization (Sec. 3);
• a formal semantics of graphs of configurations produced by multi-result

supercompilation (Sec. 4);
– a more precise representation of backward graph nodes, which result from

folding (Sec. 4), and an MRSC algorithm adapted to this representation
(Sec. 5).

We further propose an approach for the modular verification of semantics preser-
vation for any supercompiler built using the proposed components. The main
idea is to provide, as much as possible, general proofs of correctness for the high-
level parts of the supercompiler, which do not depend on the object language.
Implementers of particular supercompilers then only need to fill those parts of
the correctness proof that are specific to the object language and the particu-
lar choice of supercompiler primitive operations (generalization, folding, whistle,
. . . ). A key idea for simplifying and modularizing the overall correctness proof
is the assumption that any graph created by multi-result supercompilation, if
unfolded to a tree, can also be obtained by performing multi-result driving alone.
This important assumption allows to decompose the correctness verification in
several stages:

– verification of semantics preservation for driving + generalization in isola-
tion. In other words, all trees obtained from driving must preserve language
semantics (Sec. 3). As this step is mostly language-specific, it must be done
separately for each supercompiler.
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– general proof that graphs produced by multi-result supercompilation have
the same meaning as the trees to which they can be unfolded (Sec. 4). This
proof can be reused directly for any supercompiler based on the described
algorithm.

– using some assumptions about the folding operation, general proof that any
MRSC-produced graph unfolded into a tree can also be produced by driving
alone (Sec. 5). This proof can also be reused for any particular supercompiler,
only the assumptions about the folding operation must be verified separately
in each case. The advantage is that the impact of folding is limited only to
checking its specific conditions; other parts of the proof can ignore folding
completely.

The whistle is used only for ensuring termination, and has no impact on seman-
tics preservation at all.

The current implementation of the proposed approach is in Coq and we give
most definitions and property statements directly in Coq2. Understanding the
ideas behind most such fragments of Coq source should not require any deep
knowledge of that language, as they use familiar constructs from functional pro-
gramming languages and formal logic, only with slight variations in syntax. We
also stress that the approach is not limited in any way to working only with Coq,
or even to computer-assisted formal verification in general. Of course, the im-
plementation should be directly portable to other dependently-typed languages
such as Agda or Idris. Most importantly, the implementation of the main data
structures and algorithms should be easy to port as well to any modern language
with good support for functional programming (Haskell, ML, Scala, . . . ). In the
latter case a realistic alternative to formal proofs is the use of the sufficient con-
ditions on basic blocks in conjunction with a property-based testing tool like
QuickCheck [2], which can still give high confidence in the correctness of the
supercompiler.

2 Preliminaries

Before delving into the main components of the proposed MRSC formalization,
let’s quickly introduce some preliminary definitions, mostly necessary to make
things work in a total dependently-typed language like Coq or Agda.

2.1 Modeling General Recursive Computations

In order to formally prove correctness results, we need first to formalize pro-
gramming language semantics, in an executable form, in a total language. As
any kind of interpreter (big-step, small-step, ...) for a Turing-complete language

2 All proofs, some auxiliary definitions, and most lemmas are omitted. Interested
readers can find all the gory details in the Coq sources accompanying the paper:
https://sites.google.com/site/dkrustev/Home/publications

https://sites.google.com/site/dkrustev/Home/publications
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is a partial, potentially non-terminating function, we must select some round-
about way to represent such functions. While different partiality monads based
on coinduction exist, they all have different advantages and drawbacks [1], and
none of them is practical for all possible occasions. So we stick to a very basic
representation: monotonic functions of type nat → option A, where we use the
usual ordering for nat and an “information ordering” for option A (which is ex-
plicitly defined in Fig. 1). The nat argument serves as a finite limit to the amount
of computation performed. If we can complete it within this limit, we return the
resulting value wrapped in Some, otherwise we return None. The monotonicity
condition simply states, that if we can return a value within some limit, we will
always return the same value when given higher limits. Such a representation
should be compatible with most kinds of existing partiality monads, which can
be equipped with a run function of type nat → option A. We are interested in
the extensional equivalence of such computations: if one of 2 computations, given
some limit, can return a value, the other also has some (possibly different) limit,
after which it will return the same value, and vice versa. This is captured in the
definition of EvalEquiv. Note that if converting the definition of MRSC below

Definition FunNatOptMonotone {A} (f : nat → option A) : Prop :=
∀ n x, f n = Some x → ∀ m, n ≤ m → f m = Some x.

Inductive OptInfoLe {A} : option A → option A → Prop :=
| OptInfoLeNone: ∀ x, OptInfoLe None x
| OptInfoLeSome: ∀ x, OptInfoLe (Some x ) (Some x ).

Definition EvalEquiv {A} (f1 f2 : nat → option A) : Prop :=
∀ x, (∃ n, f1 n = Some x) ↔ (∃ n, f2 n = Some x).

Fig. 1: Model of general recursive computations

to a Turing-complete functional language like Haskell or ML, it would proba-
bly be more practical to replace this encoding of potentially non-terminating
computations with a representation of lazy values.

2.2 Bar Whistles

Following [4], we use inductive bars [3] as whistles (Fig. 2). Recall that the main
job of the whistle is to ensure termination of the supercompiler. The advantage of
inductive bars is that the supercompiler definition becomes structurally-recursive
on the bar, making it obviously terminating. Different kinds of bars can be built
in a compositional way, and we can also build an inductive bar from a decidable
almost-full relation – almost-full relations being another constructive alternative
to the well-quasi orders classically used in supercompilation [20]. We do not go
into further detail here, because the construction of a suitable inductive bar is
orthogonal to the correctness issues we study.
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Inductive Bar {A: Type} (D : list A → Type) : list A → Type :=
| BarNow: ∀ {h: list A} (bz : D h), Bar D h
| BarLater: ∀ {h: list A} (bs: ∀ c, Bar D (c :: h)), Bar D h.

Record BarWhistle (A: Type) : Type := MkBarWhistle {
dangerous: list A → Prop;
dangerousCons: ∀ (c: A) (h: list A), dangerous h → dangerous (c :: h);
dangerousDec: ∀ h, {dangerous h} + {¬ (dangerous h)};
inductiveBar: Bar dangerous nil

}.

Fig. 2: Inductive bars for whistles

3 Driving, Trees of Configurations and Their Semantics

3.1 Trees of Configurations, Sets of Trees

Given some abstract type representing configurations, we can give a straightfor-
ward definition of trees of configurations:
Variable Cfg : Type.
CoInductive CfgTree: Type := CTNode: Cfg → FList CfgTree → CfgTree.

What is conspicuously missing are contractions. We assume – as suggested
in [4] – that when present, the contraction of an edge is merged with the con-
figuration below the edge. So we need to only deal with configurations, thus
simplifying the formal definition of MRSC. As an obscure technical detail, we
use an alternative definition of lists here (FList A) just to avoid some restrictions
of Coq’s productivity checker [15]. (Readers not particularly interested in such
idiosyncrasies of Coq can safely pretend that FList is the same as list, drop the
“fl” prefix in functions/predicates like flMap, FLExists, ..., and consider list2flist
and flist2list as identity functions.)

Multi-result driving will typically produce an infinite list of infinite trees
of configurations. It appears hard to explicitly enumerate this list in a total
language, as it grows both in width and in height at the same time. As an
alternative, we can re-use the trick of Grechanik et al [4] to make a compact
representation of the whole set of trees produced by multi-result driving. The
meaning of the encoding is probably easiest to grasp in terms of the process of
multi-result driving itself, to which we shall come shortly.
CoInductive CfgTreeSet: Type :=
| CTSBuild: Cfg → FList (FList CfgTreeSet) → CfgTreeSet.
The only important operation on such sets of trees is membership. Luckily

it is definable as a coinductive relation. This definition is best illustrated by a
picture (Fig. 3).

CoInductive TreeInSet: CfgTree → CfgTreeSet → Prop :=
| TreeInBuild: ∀ c (ts: FList CfgTree) (tsss: FList (FList CfgTreeSet)),

FLExists (fun tss ⇒ FLForall2 TreeInSet ts tss) tsss
→ TreeInSet (CTNode c ts) (CTSBuild c tsss).
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CTNode c

...

CTSBuild c
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Fig. 3: Membership of a tree in a tree-set

3.2 Driving (+ Generalization)

We explicitly try to follow as closely as possible the Agda formalization of MRSC
proposed by Grechanik et al [4] (modulo alpha-equivalence). We assume the
same primitive – mrscSteps – for performing driving and generalization. Given a
current configuration, it will produce a list of results, each of which is in turn a
list of new configurations. Any such list of configurations is the result of either a
driving step or a generalization step performed on the initial configuration. We
can use this primitive to build the whole set of trees corresponding to a given
initial configuration. buildCfgTrees is actually the full high-level algorithm for
multi-result driving!
Variable mrscSteps: Cfg → list (list Cfg).
CoFixpoint buildCfgTrees (c: Cfg) : CfgTreeSet :=

CTSBuild c (flMap (flMap buildCfgTrees)
(list2flist (map list2flist (mrscSteps c)))).

3.3 Tree Semantics

We first introduce several abstract primitives, related to the semantics of the
object language (Fig. 4). The most important one – evalCfg – represents a “ref-
erence” interpreter for (configurations of) the object language. As it is encoded
using the chosen representation for general recursive functions, it must satisfy the
corresponding monotonicity condition. The other 3 primitives (evalNodeXXX )
supply the language-specific parts of the “tree interpreter”. The generic algo-
rithm of this tree interpreter – which formally defines the semantics of trees of
configurations – is given in Fig. 5. It is easy to deduce the purpose of the 3
primitives from this definition itself: evalNodeResult computes (if possible) the
final value for the current tree node, while evalNodeInitEnv and evalNodeStep
serve to maintain the evaluation environment (assuming a fixed evaluation order
from left to right for subtrees of the node). Note that, while evalCfg can be a
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general recursive computation, the primitives for the tree interpreter do not have
a “fuel” argument – they are expected to be total functions.

Variable Val : Type. Variable EvalEnv : Type.
Variable evalCfg : EvalEnv → Cfg → nat → option Val.
Hypothesis evalCfg monotone: ∀ env c, FunNatOptMonotone (evalCfg env c).
Variable evalNodeInitEnv : EvalEnv → Cfg → EvalEnv.
Variable evalNodeStep: EvalEnv → Cfg → list (option Val)→ option Val → EvalEnv.
Variable evalNodeResult : EvalEnv → Cfg → list (option Val) → option Val.

Fig. 4: Evaluation primitives

Fixpoint evalCfgTree (env : EvalEnv) (t : CfgTree) (n: nat) {struct n} : option Val :=
match n with
| 0 ⇒ None
| S n ⇒ match t with
| CTNode c ts ⇒
let stepf (p: EvalEnv × list (option Val)) (t : CfgTree)
: EvalEnv × list (option Val) :=
let env := fst p in let ovs := snd p in
let ov := evalCfgTree env t n in
(evalNodeStep env c ovs ov, ov::ovs) in

evalNodeResult env c
(snd (fold left stepf (flist2list ts) (evalNodeInitEnv env c, nil)))

end
end.

Fig. 5: Tree interpreter

The following requirement – evalCfg evalCfgTree equiv – is the cornerstone
for establishing MRSC correctness: we assume that each tree produced by multi-
result driving is semantically equivalent to the initial configuration. This as-
sumption permits to easily establish another natural coherence property – that
all trees resulting from multi-result driving are semantically equivalent.
Hypothesis evalCfg evalCfgTree equiv : ∀ env c t,

TreeInSet t (buildCfgTrees c)
→ EvalEquiv (evalCfg env c) (evalCfgTree env t).

Lemma AllTreesEquiv: ∀ env c t1 t2, let ts := buildCfgTrees c in
TreeInSet t1 ts → TreeInSet t2 ts →
EvalEquiv (evalCfgTree env t1 ) (evalCfgTree env t2 ).
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4 Graphs of Configurations, Graph Semantics

4.1 Graph definition

The definition of MRSC graphs of configurations (Fig. 6) is still similar to the
Agda formalization of Grechanik et al. [4], the important difference being the
treatment of backward nodes resulting from folding: they contain an index de-
termining the upper node + a function that can convert the upper configuration
to the lower one. Since a graph having a backward node as root has no sense
(and is never created by MRSC), we capture this invariant by a dedicated data
type – TopCfgGraph.

Inductive CfgGraph : Type :=
| CGBack: nat → (Cfg → Cfg) → CfgGraph
| CGForth: Cfg → list CfgGraph → CfgGraph.

Inductive TopCfgGraph : Type :=
| TCGForth: Cfg → list CfgGraph → TopCfgGraph.

Definition top2graph (g : TopCfgGraph) : CfgGraph :=
match g with
| TCGForth c gs ⇒ CGForth c gs
end.

Fig. 6: Graphs of configurations

4.2 Converting Graphs to Trees

We can define the unfolding of a graph of configurations into a tree of configura-
tions (Fig. 7). The main work is done in a helper function graph2treeRec, which
must maintain several recursion invariants. The parameter topG always keeps a
reference to the root of the tree, and is used to give a meaning even to incorrect
graphs, in which the index of a backward node is too big. In such cases we simply
assume the index points to the root of the graph. gs contains – in reverse order
– all nodes in the path to the root of the graph; it grows when passing through
a forward node and shrinks back when passing through a backward node. The
parameter f is the composition of all configuration transformations of backward
nodes, through which we have already passed.

4.3 Graph Semantics

We define the semantics of graphs of configurations by defining a “graph inter-
preter” (Fig. 8). Again, we use a helper function evalGraphRec, whose parameters
topG, gs, and f are used in the same way as in graph2treeRec, in essence perform-
ing graph unfolding “on the fly”. For the interpretation of each node we reuse
the same language-specific primitives we have used for the tree interpreter.
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CoFixpoint graph2treeRec (topG: TopCfgGraph) (gs: list TopCfgGraph)
(f : Cfg → Cfg) (g : CfgGraph) : CfgTree :=
let topGraph2tree (gs: list TopCfgGraph) (f : Cfg → Cfg) (g : TopCfgGraph)
: CfgTree :=
match g with
| TCGForth c gs1 ⇒

CTNode (f c) (flMap (graph2treeRec topG (g::gs) f ) (list2flist gs1 ))
end in

match g with
| CGBack i f1 ⇒ match nthWithTail i gs with
| Some (backG, gs1) ⇒ topGraph2tree gs1 (fun c ⇒ f (f1 c)) backG
| None ⇒ topGraph2tree nil (fun c ⇒ f (f1 c)) topG
end
| CGForth c gs1 ⇒ topGraph2tree gs f (TCGForth c gs1 )
end.

Definition graph2tree (g : TopCfgGraph) : CfgTree :=
graph2treeRec g nil (fun c ⇒ c) (top2graph g).

Fig. 7: Unfolding a graph into a tree

Fixpoint evalGraphRec (topG: TopCfgGraph) (gs: list TopCfgGraph)
(f : Cfg → Cfg) (env : EvalEnv) (g : CfgGraph) (n: nat) {struct n} : option Val :=
match n with
| 0 ⇒ None
| S n ⇒
let evalTopGraph (gs: list TopCfgGraph) (f : Cfg → Cfg) (g : TopCfgGraph)

: option Val :=
match g with
| TCGForth c subGs ⇒
let stepf (p: EvalEnv × list (option Val)) (g1 : CfgGraph)
: EvalEnv × list (option Val) :=
let env := fst p in let ovs := snd p in
let ov := evalGraphRec topG (g::gs) f env g1 n in
(evalNodeStep env (f c) ovs ov, ov::ovs) in

evalNodeResult env (f c)
(snd (fold left stepf subGs (evalNodeInitEnv env (f c), nil)))

end in
match g with
| CGBack i f1 ⇒
let g gs := match nthWithTail i gs with

Some p ⇒ p | None ⇒ (topG, nil) end in
evalTopGraph (snd g gs) (fun c ⇒ f (f1 c)) (fst g gs)
| CGForth c subGs ⇒ evalTopGraph gs f (TCGForth c subGs)
end

end.
Definition evalGraph (env : EvalEnv) (g : TopCfgGraph) (n: nat) : option Val :=
evalGraphRec g nil (fun c ⇒ c) env (top2graph g) n.

Fig. 8: Graph interpreter
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4.4 Graph semantics correctness

It is not hard to spot that the definition of evalGraphRec has many similarities
to the definitions of evalCfgTree and graph2treeRec. Actually evalGraphRec can
be seen as a manually fused composition of the other 2 functions. This fact is
formally verified by the following theorem, which is one of the 2 key intermediate
results used in establishing MRSC correctness:
Theorem evalGraph evalCfgTree: ∀ env g,
EvalEquiv (evalGraph env g) (evalCfgTree env (graph2tree g)).

5 Multi-result Supercompilation

5.1 Definition

We need 2 more primitives (besides mrscSteps) in order to define a generic
multi-result supercompiler. As we have already explained, we assume a whistle
in the form of an inductive bar (Fig. 9). The signature of the folding primitive –
tryFold – is determined by our decision how to encode backward nodes: if folding
is possible, tryFold must return:

– a valid index into the list of previous configurations (tryFold length);
– a configuration-transforming function, which will turn the old configuration

(higher in the tree) into the current one (tryFold funRelatesCfgs).

The requirement that no folding should be possible with empty history – try-
Fold nil None – is quite natural. The last requirement about tryFold – try-
Fold funCommutes – deserves more attention. It states that any configuration
transformation, returned by folding, commutes (in a way precisely defined in Fig.
9) with mrscSteps. The reason for this assumption is that it permits us to prove
that unfolding a mrsc-produced graph will always result into a tree that can
also be obtained through driving alone. The latter property is key for enabling
modular verification of the different supercompilers produced by the proposed
approach. This requirement is further discussed in Sec. 6.

Apart from folding, the rest of the mrsc definition is very similar to the one
proposed by Grechanik et al. [4]. The main algorithm is encoded by the recursive
function mrscHelper. The top-level function mrsc may seem complicated at first,
but it is only because it uses some Coq-specific idioms to convert the final list of
results from type CfgGraph to type TopCfgGraph. If we ignored this conversion,
the definition would become:
mrsc (c: Cfg) : list CfgGraph := mrscHelper (inductiveBar whistle) c.

5.2 Containment of Graphs in Driving Tree Sets

As already hinted, the following containment result is the second key theorem
necessary for ensuring mrsc correctness:
Theorem graph2tree mrsc In buildCfgTrees: ∀ c g,
In g (mrsc c) → TreeInSet (graph2tree g) (buildCfgTrees c).
It opens the way to replace establishing the semantic correctness of graphs

with verifying only the semantic correctness of trees.
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Definition CommutesWithSteps (f : Cfg → Cfg) :=
∀ c, mrscSteps (f c) = map (map f ) (mrscSteps c).

Variable tryFold : list Cfg → Cfg → option (nat × (Cfg → Cfg)).
Hypothesis tryFold nil None: ∀ c, tryFold nil c = None.
Hypothesis tryFold length: ∀ h c i f, tryFold h c = Some (i, f ) → i < length h.
Hypothesis tryFold funRelatesCfgs: ∀ h c i f c1 h1,

tryFold h c = Some (i, f ) → nthWithTail i h = Some (c1, h1) → c = f c1.
Hypothesis tryFold funCommutes: ∀ h c i f,

tryFold h c = Some (i, f ) → CommutesWithSteps f.
Variable whistle: BarWhistle Cfg.

Fig. 9: Remaining MRSC primitives

Fixpoint mrscHelper (h: list Cfg)
(b: Bar (dangerous whistle) h) (c: Cfg) {struct b} : list CfgGraph :=
match tryFold h c with
| Some (n, f ) ⇒ CGBack n f :: nil
| None ⇒
match dangerousDec whistle h with
| left ⇒ nil
| right Hdang ⇒
match b in (Bar h) return (¬ dangerous whistle h → list CfgGraph)
with
| BarNow h’ bz ⇒ fun (Hdang : ¬ dangerous whistle h’ ) ⇒

match Hdang bz with end
| BarLater h’ bs ⇒ fun ( : ¬ dangerous whistle h’ ) ⇒

map (CGForth c) (flat map (fun css : list Cfg ⇒
listsProd (map (mrscHelper (bs c)) css)) (mrscSteps c))

end Hdang
end

end.
Definition mrsc (c: Cfg) : list TopCfgGraph :=
let gs := mrscHelper (inductiveBar whistle) c in
mapWithInPrf gs

(fun g Hin ⇒ match g return = g → TopCfgGraph with
| CGBack n f ⇒ fun Heq ⇒
let Hin’ := eq rect g (fun g ⇒ In g gs) Hin Heq in
match mrscHelper nil notBack Hin’ with end
| CGForth c gs ⇒ fun ⇒ TCGForth c gs
end eq refl).

Fig. 10: Big-step multi-result supercompilation

5.3 MRSC Correctness

The next theorem is the main result in this article. Its proof directly relies on the
intermediate theorems evalGraph evalCfgTree and graph2tree mrsc In buildCfgTrees,
and also on the key assumption evalCfg evalCfgTree equiv. The last assumption
is the main task left to the user of the approach to verify individually in each
particular case.
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Theorem mrsc correct: ∀ env g c, In g (mrsc c) →
EvalEquiv (evalGraph env g) (evalCfg env c).

6 Current Status and Future Work

The main disadvantage of the current approach is that it has not been field-
tested yet on specific supercompilers. We have actually started to build a simple
supercompiler for SLL, a basic first-order functional language often used (under
different names, and with small variations) in many works on supercompila-
tion [9,17]. Although the verification of this supercompiler – using the proposed
approach – is not complete, it has already pointed to some improvements. One
of these improvements is already present – evaluation functions take an environ-
ment as input (and some return a modified environment). Environment-based
evaluation (of trees/graphs of configurations) is useful in typical supercompilers
for at least two reasons:

– Contractions in the tree/graph often take the form of patterns, which bind
variables inside the corresponding subtree. A successful pattern match will
supply values for these bound variables. Environment-based interpreters are
a well-known and well-working approach to keep track of such new bindings
during the evaluation of subexpressions.

– Generalization is often represented in the tree/graph with let-expressions (or
something working in a similar way), whose evaluation by the tree interpreter
also involves passing new bindings for the evaluation of sub-trees. Moreover,
it is difficult to pass such bindings using a substitution operation, as we
bind the let-bound variable not to a configuration, but to a computation,
which may yield the value of the corresponding subtree. Environment-based
evaluation appears easier to use in this case.

The introduction of evaluation environments as an abstract data type has
made impossible to provide general proofs of monotonicity for the tree and for
the graph interpreter. Such monotonicity properties can still be very useful, for
example when the user proves equivalence between the tree interpreter and the
reference interpreter of configurations. We plan to try to recover these general
proofs in the future, by postulating some user-defined ordering of environments,
and using it to formulate monotonicity requirements for the language-specific
building blocks of the tree interpreter.

Another limitation made apparent by the SLL supercompiler involves the pre-
cise definition of configuration equality, which is used in several places (in the
definition of membership inside our representation of tree sets; in the required
properties of the folding primitive, etc.). Currently we use strict syntactic equal-
ity, but this may prove too restrictive in many practical cases. For example, if the
configuration can bind variables, alpha-equivalence may be a much more useful
notion of equality. We plan to fix this deficiency by introducing an abstract con-
figuration equality relation, and basing other definitions on this user-supplied
relation instead of the built-in syntactic equality.
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We use a general assumption, that if we unfold a graph resulting from su-
percompilation into a tree, this tree must be among the trees generated by
multi-result driving alone. The commutativity condition on configurations pro-
duced by folding is imposed exactly in order to make a general proof of this
assumption. Both the general assumption and the folding requirement appear
to be satisfied in typical cases (such as renaming-based folding, or folding only
identical configurations). There are cases, however, where both the assumption
and the condition do not hold. Consider folding based on substitution instead of
renaming (take some unspecified functional language)3. In this case we can have
a path fragment in the tree:

. . . f(x) −→ . . . −→ f(5)

where folding is possible as there is a substitution converting f(x) into f(5).
Assume further that f is defined by pattern matching on its argument. In this
case the tree unfolded from the graph cannot be produced by driving alone,
because:

– driving f(5) will proceed with a deterministic reduction, giving rise to a
single subtree;

– the graph at node f(x) will have 2 subgraphs corresponding to the 2 clauses
in the definition of f (assuming Peano representation of natural numbers).
Making a copy of this graph will give 2 subtrees at node f(5) as well.

Note, however, that we can achieve similar effect with a suitable combination of
generalization and renaming-based folding. The relevant path fragment in this
case will be:

. . . f(x) −→ . . . −→ f(5) −→ let y = 5 in f(y) −→ f(y)

Here folding by renaming from f(x) to f(y) is possible. So, ruling out folding
by substitution does not lead to an important loss of generality. It remains to
be seen if there are other useful kinds of folding ruled out by our assumptions,
and, independently, if we can relax the properties required of the folding prim-
itive, while keeping the overall separation of concerns achieved by the current
approach.

Another possibility for future improvements concerns the requirement of se-
mantics preservation for the tree interpreter (evalCfg evalCfgTree equiv). Recall,
that this assumption must be verified separately for each supercompiler. This
verification step will likely be the most complicated one for specific implemen-
tations based on the current approach. So it is interesting to try to find simpler
sufficient conditions for the tree interpreter, which can replace this requirement.

Finally, note that we completely omit any formalization of residualization
(converting the graph of configurations back into a program in the object lan-
guage). To complete the proof of correctness of a specific supercompiler, the
user must provide a separate proof for the correctness of residualization. Still,
3 Example suggested by Ilya Klyuchnikov
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the proposed approach may offer some help: as we have established the equiv-
alence in the general case between the tree and the graph interpreter (for trees
produced by unfolding a graph), it suffices for the user to make a specific proof
of equivalence between the residualized program and the tree interpreter – which
can be slightly simpler that equivalence w.r.t. the graph interpreter, as folding
has no impact on the tree interpreter.

An interesting long-term goal would be to try to apply a similar approach for
modular verification to other generalizations of classical supercompilation, such
as distillation [5].

7 Related Work

Multi-result supercompilation was introduced by Klyuchnikov et al. [10] and
more formally described in later work by the same authors [11], as a gener-
alization of classical [18, 19] and non-deterministic supercompilation. Already
in the second work on MRSC, there is a clear separation between the high-level
method of multi-result supercompilation, which can be described in a completely
language-neutral way, and the set of language-specific basic operations needed
to obtain a complete working supercompiler. The recent Agda formalization of
“big-step” MRSC [4] is based on an even simpler set of basic operations encap-
sulating the language-specific parts of the supercompiler. Our work is directly
based on this Agda formalization, with some changes in the treatment of folding
necessitated by our different goals. We do not use a compact representation for
the set of graphs produced by MRSC, but reuse the same idea to represent the
set of trees obtained by multi-result driving. It should be easy to merge the 2
formalizations for use cases that may need both an efficient way to represent and
manipulate the result set of MRSC and a setting for verifying the correctness of
these results.

A similar generic framework for implementing and verifying classical-style
supercompilers has been proposed by the author [13]. The current work can be
seen as extending that framework to cover the case of multi-result supercom-
pilation. The current formalization is actually simpler, despite the fact that it
covers a more general method. This is partly due to the inherent simplicity of
MRSC itself, and also a result of incremental improvements based on experience
with the previous framework. In particular, we hope the current approach will
provide better treatment for generalization. Our stronger assumption of tree-
interpreter semantics preservation permits us to have an unified general proof of
both soundness and completeness of MRSC, while [13] deals only with soundness.

Taking a wider perspective – about supercompilation and related techniques
in general – there are numerous works describing specific supercompilers, includ-
ing correctness proofs; too many to attempt to enumerate them here. There are
also some more general approaches about establishing supercompiler correctness,
which are not tied to specific implementations. Sand’s improvement theorem [16],
for example, gives a general technique for proving semantics preservation of dif-
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ferent program transformations, but only for the case of a functional language
used as input.

There exist also a few (mostly) language-neutral descriptions of classical su-
percompilation as a general technique. Jones presents an abstract formulation of
driving [6], with only a small number of assumptions about the object language.
Still, some of these assumptions seem geared towards simple imperative or first-
order tail-recursive functional languages. Also, termination and generalization
are not treated there. Klimov [7] covers the complete supercompilation process,
and proves a number of interesting high-level properties. To achieve these results,
Klimov assumes a specific object language (first-order functional) and data do-
main. It seems feasible, however, to generalize this approach by abstracting from
the details of the object language.

8 Conclusions

We have described the current state of a general approach for modular verifica-
tion of arbitrary multi-result supercompilers. The main correctness property we
are after is preservation of object language semantics by the supercompiler. One
key observation that enables our modular approach is that MRSC can be de-
fined in terms of a reusable top-level algorithm + a set of independent building
blocks, which must be implemented anew for each specific supercompiler. We
propose to apply a similar kind of modularity for the verification of correctness:
general reusable theorems concerning the top-level algorithm, which rely on a set
of smaller independent properties concerning the building blocks (driving, fold-
ing, . . . ). Only the latter set of properties must be verified from scratch in each
case, the general theorems can be reused. Another, more specific idea concern-
ing verification modularization is to consider the unfolding of MRSC-produced
graphs of configurations back into trees of configurations. If we can show (as we
do, under certain assumptions), that the unfolded graph will always belong to
the set of trees produced by driving (+ generalization) alone, we can then ignore
completely graphs and folding during the verification process. What is needed
in this case is to only verify semantics preservation for the set of trees produced
by multi-result driving.

We stress again, that although the current implementation of the approach is
inside a proof assistant (Coq), and we speak of formal verification, the approach
can be equally useful for verification by testing. Most modern languages already
feature property-based testing tools mostly inspired by the Haskell QuickCheck
library [2]. The set of correctness assumptions we have identified is perfectly
suitable as a starting point of such property-based testing. So, even without doing
formal computer-checked proofs, implementers of multi-result supercompilers
can use the proposed approach to gain confidence in the correctness of their
software.

We must still warn that we are reporting the current state of a work in
progress. As we test the approach on specific supercompilers, we shall likely find
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further opportunities for improving the framework and making it more easily
applicable.
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