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Abstract. Basic algebraic notions are introduced which can be used to
describe and to transform program-data complexes for traditional lan-
guages, restricted computation, non-numeric computation and modeling.
General algebraic program systems (GAPS) are free of assumptions what
computing (programming) systems have as their particular constructs.

First of all we argue why current technique is sometimes not adequate.
Then we show how to interpret notions of abstract algebra (groupoid
structure) as super-von Neumann computational structure and how to
express many useful structures and notions in an algebra. Then GAPS
are introduced and basic mathematical results are stated including the
precise criterion when a given system of actions over programs can be
added to given programming language. Various examples of GAPS are
given. And at last we show possible primitives of ‘structured algebraic
modeling’ (programming).

Keywords: program algebras, reversive programs, near-reversivity, al-
gebraic computing

The general sructure of paper

Our introduction gives an informal insight why so abstract algebraic formalism
is reasonable for some problems of programming, what are its motivations and
main difference from other types of program algebras.

First of all we state basic analogies between program and computation struc-
tures and algebraic notions in groupoid (a structure with non-associative binary
operation). The main result here is that elements of groupoids can be viewed as
well as data, actions, actions over actions and so on. Thus we get a ‘functional’
programming on entities which are not necessary functions. The side results are
that many control and data structures can be expressed purely algebraically
without any reference to particular control structures.

Then we define GAPS (Generic algebraic program structure) — a very ab-
stract algebraic description of programs.

Basic properties of GAPS are studied and it is proved that many tradi-
tional languages can be represented as GAPS because they model the λ-calculus.
There are also example of dully non-traditional computing structures modeled by
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GAPS. Two precise criteria when a given language can be enriched or extended
by the given system of program transformations are stated.

And at last we define structures which allow to construct near-reversive com-
putations: reversive data types, mirrors, interruptors, crystals, wheels. An ex-
ample how to ‘program’ and to design a scheme by these structures is given.

1 Introduction

Reversible computing was the big bang inspiring this investigation. More pre-
cisely, it was a cognitive dissonance between brilliant ideas of von Neumann,
Landauer, Toffoli, Feynman, Merkle and more than 30 years of stagnation in “ap-
plied research”. Sorry, it is not a stagnation, but intensive running in a squirrel
cage wheel (maybe different for different ‘schools’). Usually such effect is induced
by some assumption which is so common that it becomes almost invisible. But
really it stands on the way, pollutes this way but nobody is brave enough to
point to this obstacle (a sacred cow, as it is called in [5]).

Here this cow is that computations are binary. Remember that mathematical
model of invertible functions is a group. Works (including mines) in this direction
were based on groups till 2012.

Bennett pointed out that reversivity can beat Landauer limit only if the
control system is also based on invertible transformations. By control system we
mean here a system of entities organizing the execution of elementary actions as
elements of a computing system. These ones can be the statements and structures
of programming language, the connectors in a physically realized scheme and so
on.

It is necessary to remember the difference between two notions. Reversive
computing, reversive actions are fully invertible. a−1 can be used both before and
after a, they are in some sense bijective. Reversible ones are retractable ones,
they are injective, this action can be undone but not prevented [8]. The store
for all intermediate results is a way to provide reversibility but not reversivity.
The multiplication of integers by 2 is reversible function but not reversive one.

There are important and fundamental invertible commands which cannot be
represented as functions and cannot be embedded into group structure. First of
all this is the absolute mirror or inversion of a program segment.

We use the list postfix notation for function or action application: (a F )
where F is an action applied to a.

Definition 1. Absolute mirror is the action transforming a preceding action
into its inversion: (f M) = f−1. UNDO is the action undoing the last block of
actions: {a1; . . . an} ;UNDO = EMPTY.

Example 1. M and UNDO are non-associative entities and almost never can be
embedded into structure of (semi)group:

((a ◦ b) ◦M) = (b−1 ◦ a−1) (a ◦ (b ◦M)) = (a ◦ b−1)

{a; b}; UNDO 6= a; b; UNDO.
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There is another aspect of a problem. Program and algorithmic algebras is a
classic branch of computer science. They take start at 60’ths. Glushkov [1] de-
fined algorithmic algebras using operators corresponding to base constructions
of structured programming, Maurer [2] introduced and studied abstract alge-
bras of computations (program generic algebras, PGA) more like to computer
commands, based on semigroups and on operators representing gotos. Various
kinds of algorithmic and dynamic algebras follow these two basic ideas.

For main results of Glushkov approach we refer to [3,4]. For current investi-
gations in PGA a good summary are [6,7]. There are more than hundred works
on algebras of programs cited in [11] where a comprehensive survey up to 1996
is done. Almost all these works are devoted to Turing complete systems. But
even reversible systems cannot be Turing complete [13,14].

Full reversivity restricts class of problems more severely. Factorial, multipli-
cation and division of integer numbers are irreversible. All arithmetic operations
on standard representation of real numbers are not reversive. If elementary ac-
tions are invertible a problem itself can be not invertible.

Example 2. Sorting is irreversive because we forget initial state and it cannot
be reconstructed from sorted array. Assembling of Rubik cube is irreversive due
to similar reasons.

Even if we go beyond the problem of heat pollution during computations
reversivity arises due to development of computer element base. Quantum com-
putations are reversive. Molecular computations are reversive. Superconductor
computations often are reversive. Nanocrystal computations are reversive. So
studying of computations where majority of operations are reversive is neces-
sary.

Concrete functions are often defined through common λ-notation. This does
not mean that all our constructs are based on λ-calculus.

2 Algebraic structures from the point of view of
programming

Definition 2. Signature σ is a list of symbols: functions (binary functions can
be used as infix operations), constants and predicates. There is a metaoperator
arity(s) giving for each function or predicate symbol its number of arguments.
If there is the predicate = it is interpreted as equality. s ∈ σ where sigma is a
signature means that symbol s is in σ.

Algebraic system S of signature σ is a model of this signature in the sense
of classical logic. We have a data type (or nonempty set) S called carrier and
second order function ζ such that for function symbols ζ(f) ∈ Sarity(f) → S,
ζ(f) ∈ Sarity(f) → {false, true} for predicates, ζ(c) ∈ S for constants.

Definition 3. Groupoid is an algebraic system of signature 〈~,=〉, where
arity(~) = 2. Its carrier is often denoted G, symbol for its binary operation
can be various for different groupoids. Element e is an identity (or neutral
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element) if ∀xx ~ e = e ~ x = x. Element 0 is zero if ∀xx ~ 0 = 0 ~ x = 0.
Left identity is such a that ∀x a~x = x. Left zero is such a that ∀xx~a = a.
Analogously for right identity and zero. Idempotent is such a that a ~ a = a.
Groupoid is a semigroup if its operation is associative. It is commutative if its
operation is commutative. It is injective if

∀x, y, f x~ f = y ~ f ⇒ x = y.

Semigroup is a monoid if it has an identity element. Monoid is a group if
there is identity element and for each x exists y such that f ~ g = g ~ f = e.
Bigroupoid is an algebraic system with two binary operations.

Morphism of algebraic structures is a map of their carriers preserving all
functions and constants, and truth (but not necessary falsity) for all predicates.
Isomorphism is a bijective morphism preserving falsity.

Now we comment this notions from informatic point of view.
Non-associative groupoid gives a set of expressions isomorphic to ordered

directed binary trees or Lisp lists.

Example 3. ((a~ (b~ c))~ (a~ d)) is an expression for Lisp ((a b c) a d) id ~
is CONS. It defines the binary tree on fig. 1.
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Fig. 1. ((a~ (b~ c))~ (a~ d)) as a tree

Abstract algebra is extremely valuable for program architects and analysts
because each isomorphism gives another representation for data, each morphism
gives a structure which can be viewed as approximation for full data or valuable
analogy.

If operation is commutative tree becomes inordered and direct analogies
with lists vanish. If it is associative list becomes linear and tree becomes a
one-dimensional array. Any associative operation can be interpreted as function
composition. It follows from classical theorem

Theorem 1. Each semigroup is isomorphic to semigroup of functions with com-
position as operation. [10]
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This theorem gives a full criterion when a space of actions can be viewed
as a space of functions: associativity. Thus Example 1 shows that actions not
always can be modeled as functions. Because a semigroup operation always can
be viewed as function composition it is usually denoted ◦.

The following example shows central role of semigroups in algebraic infor-
matics.

Example 4. Each collection of functions or relations closed under composition is
a semigroup. Thus we can treat functions definable by programs as the single
semigroup even our language is strongly typized. Programs are simply functions
undefined on data not belonging to types of their arguments. Each finite auto-
mate can be treated as a finite semigroup and vice versa any finite semigroup can
be viewed as a finite automate. Actions in each program language with sequen-
tial composition (usually denoted by semicolon) also form a syntactic semigroup
even their effect cannot be treat as a function.

The last sentence is the second keystone for very abstract notion of program
algebra independent from assumptions on concrete operators of language and of
functionality of actions.

One example of a commutative non-associative algebra of actions will be used
below and is sufficiently simple and expressive to show many peculiarities.

Example 5. A commutative groupoid formalizing a simple game. Its carrier is
the set of three elements {well, scissors, paper} (denoted {w,s,p}). Our operation
gives for each pair the winner.

w ~ s = w; w ~ p = p; s~ p = s; x~ x = x.

(w ~ s) ~ p = w ~ p = p, w ~ (s ~ p) = w ~ s = w. So simultaneous (or
independent) actions of two players effect in commutativity of the operation.

So commutativity of a semigroup means that our actions are functional and
independent. From the point of view of computations they can be executed in
various ways (sequentially in any order; (partially) parallel; and so on). From
the logical point of view our actions can be viewed as spending of a money-like
resource (Girard’s linear logic [9]). We take into account only a total amount of
resources in the ‘account’. Each operation spends them independently.

3 Groupoid as a computing structure

A groupoid can be viewed as a ‘functional’1 computing structure of ‘super-von-
Neumann’ kind. Each element a of groupoid can be viewed also as the action
with the effect λx. (x~ a). Furthermore it is actions on actions and so on. Data
and commands are the same.

So now we look on many interesting elements and properties from the point
of view of ‘algebraic computer’.

1 But remember that actions not always are functions!
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1. Associativity means that our actions are without ‘side effects’ and can be
viewed as functions.

2. Unity e means ‘do nothing’. Moreover each right unity ((x ~ e) = x is ‘no
operation’ command.

3. 0 is the fatal error. Mathematically 0 in semigroups of relations is the empty
relations (function which is never defined). If groupoid has more than one
element that 0 is not (left, right) identity.

4. Left zero (z ~ x) = z is an output, the final result of a computation. More
precisely if there is the zero then output can be described as ∀x (x 6= 0 ⊃
(z ~ x) = z) (left near-zero).

5. Right zero (x~ z) = z is at the same time so called ‘quine’ (program giving
itself) and an input, the initial value overriding all earlier. More precisely if
there is the zero then input can be described as ∀x (x 6= 0 ⊃ (x ~ z) = z)
(right near-zero).

6. Idempotent (z ~ z) = z is a pause.
7. Right contraction (a ~ f) = (a ~ g) ⊃ f = g is practically almost useless

property: each program acts differently on each elements than any others.
But there is an important exception. If our operation is associative and each
element has the inversion a◦a−1 = e; a−1◦a = e then our semigroup becomes
a group. Each space of bijective functions can be viewed as a group and vice
versa. Elementary fully invertible actions on some data type form a group.
In a group we can ‘prevent’ an action not only to undo it.

8. If (x~ a)~ ã = x then ã is a weak right inverse for a. It grants undoing
of a.

9. A one-way pipe p is such element that

(x~ p) = y ⊃ (y ~m) = 0.

10. A subgroupoid can be viewed as a block of program or construction.
11. Direct product of groupoids means that computation can be decomposed

into independent branches corresponding components of direct product.

So we see

Algebraic programming is functional and super-von-Neumann
by its essence.

Each groupoid generates the semigroup of actions

Definition 4. Action of groupoid element sequence f1, . . . , fn is a function

ϕf1;...;fn = λx. (. . . ((x~ f1)~ f2) . . . )~ fn).

This semigroup not always fully describes program actions.

Lemma 1. Actions of groupoid form a semigroup.

Proof. Composition of ϕf1;...;fn and ϕg1;...;gk is the action corresponding to

ϕf1;...;fn;g1;...;gk .
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To make algebraic computation more structured we will partially decompose
our groupoid into subsystems. Three main kinds of subsystems are:

1. block;
2. connector;
3. computation-control pair

Block is a subgroupoid. All actions with block elements do not lead out of
block. In the simplest case block has inside all its outputs and often also inputs as
corresponding algebraic values. To make our algebraic computation structured
we demand

If x and y are from different blocks then (x~ y) = 0.

There is an important transformation of groupoid. Dual groupoid G′ to G
is the groupoid with the same carrier and operation (x ∗ y) = (y ~ x). In both
program and technique realizations dual groupoid is implemented by the same
structure where arguments (signals) are exchanged. Dual to associative system
is associative.

(a ∗ (b ∗ c)) = (c ◦ b) ◦ a; ((a ∗ b) ∗ c) = c ◦ (b ◦ a).

Nevertheless when computing system is modeled as a groupoid dual system
to a subsystem is to be represented by another block. In this case we denote
the element of dual corresponding to a as a′. ′ is not an internal operation. In
realization a and a′ usually will be the same value, element or signal.

Connectors transfer information and control between blocks. They are out-
side connecting blocks. We demand for connectors c that if (x ~ c) = y then
(x ~ y) = 0. Two most valuable kinds of connectors are mirrors and one-way
pipes.

A mirror m is such an element that

(x~m) = y ≡ (ỹ′ ~m) = x̃′.

It seems now that mirrors and pipes are to be the only connectors admitted
in structured algebraic computations.

A computation-control pair is a groupoid decomposed into direct product
G1×G2 where G1 has no inputs and outputs. Realizing this pair we are to grant
that any output value computed in G2 will interrupt process in G1.

Example 6. Let a clever, brave and polite black cat is creeping up to mouse
in a black room. G1 here means a crawling process and G2 means a sensor
interrupting crawling and initializing attack when the mouse detects the cat.
We have the following diagram Crawling and attack easily are described by
semigroups (see [18]). Interruption and pipe are non-associative operators. Sensor
is almost associative and reversive: its actions form a group in which one element
is replaced by output.
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Mirror

Pipe

Fig. 2. Connectors

crawling

interruption

Attack

Fig. 3. Black polite cat
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Let us consider another interesting possibility arising because high order
essences arise in algebraic computing from the very beginning, on level of ele-
mentary actions.

It is known that current program systems are like to dinosaurs burdened
by gigatons of code. Usually explosive increasing of size of program systems is
considered as objective inevitable factor. But there is a side way.

Example 7. High order transformations can shorten programs and sometimes
computations in tower of exponents. For example compare two sequences of
definitions below

Φ1 = λf. λx. ((x f) f);
Φn+1 = λΨn. λΨn−1. ((Ψn−1 Ψn) Ψn).

(1)

(x (f (Φ1 . . . (Φn−2 (Φn−1 Φ
k
n)) . . . ))) = (x f2

2 ... 2
(k times)) (2)

So groupoid induces at least two additional structures: finite order functionals
and the semigroup of actions. Higher order functionals need no extra support
here. To describe algebraic system effectively it suffices to add an operations
converting a system of elements into a single block.

4 General algebraic program structure (GAPS)

Considerations above lead to the formal notion. Let us denote an operation of
applying f to x by x ? f , an operation composing two elements into the single
block a ◦ b.

Definition 5. General algebraic program structure (GAPS) is a bigroupoid
where the following holds:

((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) (3)

((x ? f) ? g) = (x ? (f ◦ g)) (4)

If GAPS has unity and (or) zero they are to satisfy equations

(0 ? x) = (x ? 0) = 0 (5)

(x ? e) = x (6)

x ◦ 0 = 0 ◦ x = 0 (7)

e ◦ x = x ◦ e = x. (8)

So application is not necessary associative (and in fact we don’t need compo-
sition if it is associative) and composition is associative and gives us possibility
to encapsulate a number of elements into the single one. Unity is a right unity.

Lemma 2. Each groupoid G can be extended up to GAPS.
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Proof. Consider the following Horn theory. It has constants for all elements of
G. It includes the diagram of G (i. e. the set of true closed elementary formulas),
a new constant B and the axioms

((x ? f) ? g) = (x ? (f ? (g ?B))) (9)

(f ? ((g ? (h ?B)) ?B)) = ((f ? (g ?B)) ? (h ?B)) (10)

Its initial model is a desired GAPS.

We are sure that GAPS is in algebraic sense a minimal system describing ev-
ery imaginable collection of elementary actions and programs (constructs) com-
posed from them.

The second operation allows us to formulate many properties more expres-
sively and effectively.

Definition 6. An element x 6= 0 is a divisor of zero if there is such y 6= 0 that
x ◦ y = 0. An element y is a right inverse for x if x ◦ y = e. An element x−1 is
the inverse of x if x ◦ x−1 = x−1 ◦ x = e. Two elements are mutually inverse if
a ◦ b ◦ a = a, b ◦ a ◦ b = b.

So each of mutually inverse elements grants undoing (prevention) for another on
codomain (domain) of the last one (if they are partial functions).

The next simple theorem shows that every system of functions (every semi-
groups) can be enriched by every system of total program transformations, so it
is called theorem on abstract metacomputations. It needs some preliminary
discussion.

Remember the notion of enrichment for algebraic systems (its direct analogy
for classes in programming is called specialization). Let a signature σ1 extends a
signature σ. An algebra A1 in σ1 is enrichment of A in σ if all carriers, functions,
constants and predicates from σ are untouched.

Let there is a morphism α : G → (G → G) of the semigroup G into the
semigroup of maps of its carrier such that (e α) = λx. x, (0 α) = λx. 0. From
the programmer’s point of view it gives interpreter, translator, compiler or su-
percompiler giving an executable module for a high order program.

An example of such morphism. (x α) = λx. 0 for all divisors of zero. (x α) =
λx. x for others. x ? y = x ◦ y.

Theorem 2. Each semigroup G can be enriched to GAPS such that (x ? f) =
(x (f α)).

Proof. Laws for GAPS hold. Non-trivial is only (10).

((x ? f) ? g) = ((x (f α)) (g α)) = (x ((f α) ◦ (g α))) =

(x (f ◦ g α)) = (x ? (f ◦ g))

�
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Lemma 3. For each action ϕ of groupoid there is an element α such that
(x ? α) = (x ϕ).

Proof. Let f1, . . . , fn be an arbitrary action. Applying (4) and associativity of
◦ get

(. . . ((x~ f1)~ f2) . . . )~ fn) = (x~ f1 ◦ f2 · · · ◦ fn).

�

Example 8. Some ‘natural’ assumptions destroy GAPS. For example if
∀f (e ? f) = f two operations coincide.

(x ? y) = ((e ? x) ? y) = (e ? (x ◦ y)) = x ◦ y.

Consider this phenomenon. 0 is the fatal error and we cannot do with it inside
of system. e can be interpreted as an empty program but program transformer
can generate non-empty code starting from empty data. See example 14 below.

Example 9. Direct application of process to enrich groupoid to GAPS almost
always leads to infinite structure. Often it is possible to remove superfluous
constructs and get the finite GAPS.

Consider groupoid from the example 5.First of all we write down all dif-
ferent actions of groupoid in the form shorter result: longer sequence of

elements.

w: wwp, s: wss, p: psp, ws: wws, sw: www, ps: sss, sp: pss, wp: ppp, pw:
pwp,wsp: pps, spw: pww, pws: sws.

Semigroup of functions of actions consists of twelve elements and is not com-
mutative though initial groupoid is commutative. Often the groupoid operation
∗ can be extended to GAPS by different ways. For example here there are at
least two extensions:

(ws * sw) = wssw = wsw = ws;
(ws * sw) = (ws)*(s*w) = (ws)w = (w*w)(s*w) = ww = w.

Now consider a problem when and how we can join some system of pro-
gram transformations with a given program system (= a semigroup of program)
and to get the single language of metaprogramming. There are three natural
subproblems.

1. How to join a language with a system of transformation not changing the
language (the semigroup)?

2. How to preserve some sub-language (sub-semigroup) maybe converting other
constructions into transformations?

3. How to extend a language to a metalanguage not changing notions inside of
the given language?
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Definition 7. Let some system of transformations A is given as system of func-
tions on carrier of a semigroup G described by theory Th and desired properties
of transformations are written down as an axiomatic theory Th1. It is con-
servative if there is a GAPS enrichment AG of G such that every ϕ ∈ A is
represented as an action of groupoid (x ? α) = (x ϕ) for some α. It is conser-
vative over the subgroup G0 if it is conservative and in AG a ? b = a ◦ b for all
elements of G0. It is admissible if there is a semigroup G1 such that G ⊆ G1

and A is conservative for G1.
Let ThP is a theory Th in which all quantifiers are restricted by unary

predicate P : ∀xA(x) is replaced by ∀x (P (x) ⊃ A(x)); ∃xA(x) is replaced by
∃x (P (x)&A(x)).

A strongly admissible if it is admissible and for resulting algebra theories
Th1 and Th remain valid.

Lemma 4. Collection of actions A is conservative iff its closure is isomorphic
to subsemigroup of G.

Proof. By 3 if enrichment is successful then each element of the semigroup gener-
ated by A represents action of some element of G. Thus closure of A is embedded
into G.

Vice versa, if the closure of A can be embedded into G then each action from
A can be represented by its image by this embedding.
�

Example 10. Let there be only one action: inversion of programs M such that
((a M) M) = a. To enrich a semigroup od programs by this action is possible
iff there is an element of order 2 in this semigroup: f 6= e&f ◦ f = e. No matter
how this f acts as function.

Lemma 5. Collection of actions A is conservative over G0 iff there is monomor-
phism ψ of its closure into G such that for each f such that (f ψ) ∈ G0

(a f) = (a ◦ (f ψ)) holds.

Example 11. Using this criterion we can test possibility of enrichment up to
language of metacomputations considering strings as programs and remain un-
touched the sublanguage of numerical computations.

The following theorem is proved in [18]. Its proof requires model-theoretic
technique, is long and resulting construction is not always algorithmic one.

Theorem 3. (2012–2014) Let a system of actions A is described by a theory
Th1, and Th is a theory of semigroup G and P is a new unary predicate.
Then A is strongly admissible over G iff there is a partial surjection ψ : G→ A
such that (g1 ◦ g2 ψ) = (g1 ψ) ◦ (g2 ψ) if all results are defined and the theory
Th1 ∪ ThP is consistent.

There is an important consequence of this theorem.
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Proposition 1. Every set of actions A is admissible over G if both theories
consist only from facts (true formulas of the form [¬](a{◦, ∗}b) = c).

Example 12. Consider an additive group Z3 and add actions of its objects {0, 1, 2}
as well, scissors and paper from example 5. Their actions can be described as
functions on Z3 with values 002, 011, 212. Now we extend wsp-groupoid to twelve
elements semigroup as in example 9. To conform with it is necessary to add iden-
tity which don’t belongs to this closure and denote this monoid C. Consider a
direct product of C× Z3 and define actions as follows.

(〈c, x〉 ? 〈d, y〉) = 〈c ◦ d, (x+ y d)〉 .

This GAPS contains Z3. Elements of C can be considered as commands and
elements of Z3 as data. (x d) is application of sequence of actions to an element
coded by x and coding of the result. Commands transform as a semigroups but
their effects as groupoid.

There is another way to define GAPS on the same carrier.

(〈c, x〉 ? 〈d, y〉) = 〈(c ? d), (x+ y (c ? d))〉 .

Thus the problem is when this extension is computable. It can be infinite
and non-computable even for finite theories, finite semigroup and collection of
actions. Though this theorem is pure one it gives a valuable negative criterion.

A practical consequence. If a system of program transformations destroys
properties of program or forced to make different programs equal it is incorrect.

There is a particular case when our extension is semi-computable.

Definition 8. Horn formula (quasi-identity) is a formula

∀x1, . . . , xk (Q1& · · ·&Qn ⊃ P ),

where xi all its variables, and all Qi, P are predicates.

If our theories consist of Horn axioms then GAPS can be constructed as the
factorization of the free GAPS according to provable identity of terms (the initial
model).

Example 13. Because λ-calculus lies in foundations of the modern mathematical
theory of Turing-complete program systems (see [11]) it suffices to construct a
model of λ-calculus as a GAPS. To do this we take an equivalent representation
of λ-calculus as combinatory logic and take its basis {I,B,C,S} [12] described
in our terms as

(x ? I) = x

(x ? (f ? (g ?B))) = ((x ? f) ? g)

(x ? (f ? (g ?C))) = ((x ? g) ? f)

(x ? (y ? (z ? S)) = ((x ? y) ? (x ? z)).
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Adding the axiom of associativity of composition B (10) and the definition

f ◦ g = (f ? (g ?B))

we get a model of λ-calculus and using this one we get models for all standard
and almost all non-standard programming languages.

To get a model for typed λ-calculus it suffices to add zero 0 and to redefine
? as zero when types are not conforming. To get the identity it suffices to add
the following axioms:

(I ? (f ?B)) = f (f ? (I ?B)) = f.

Example 14. One more example how to turn program system into GAPS. Let we
have an algorithmic language in which symbols are operators and concatenation
of strings is composition of programs (e.g. Brainfuck Brainfuck). Then empty
string is program doing nothing. It can be naturally represented as GAPS. a ◦ f
is simply concatenation. a?f will be defined as follows. If f is a correct program
then its value on a is a ? f . If f yields an error or it is syntactically incorrect
then our value is 0.

We see that the result of action over an empty program can be arbitrary.

Example 15. In 1972 one research stopped one little step before GAPS [16].
Consider the alphabet {K,S, (, )}. Its symbols translate into combinators as

(K ϕ) = K (S ϕ) = S (‘(’ ϕ) = B (‘)’ ϕ) = I

The result of string translation is defined recursively: (a is a symbol, σ is a
string):

(aσ ϕ) = ((σ ϕ) ? (a ϕ)).

This interpretation turns the combinatory logic into a Brainfuck-like pro-
gramming language. But resulting GAPS is not a GAPS for the combinatory
logic. It also includes syntactically incorrect constructs like ))))SK((.

Example 16. If our semigroup is a monoid then universal function in GAPS is
trivial U = e:

(x ? (f ?U)) = (x ? f),

A partial evaluator is not trivial:

(f ? (x ?PE)) = (x ? f),

A fixed point operator
((f ?Y) ? f) = (f ?Y),

is trivial if there is 0: Y = 0.

GAPS can easily express some functional restrictions on the programs. For
example the papers [17, 18] are mathematically describing and investigating
GAPS for reversive, reversible and completely non-invertible programs are des.
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5 Some tools to compose algebraic programs

Algebraic programming is to be a collection of tools to compose and decompose
algebraic substructures of GAPS. Some of these tools were outlined for groupoids
in the section 3.

The important tool of (de)composition is the construct used in the example
12. Elements of Z3 can be considered as data and elements of the semigroup as
commands. Now we formulate a general case for this construction.

Definition 9. Semidirect product of GAPS. Let there are two GAPS: a GAPS
of commands C and a GAPS of data D. Let ϕ : C→ Hom(D,D) is a morphism
of the semigroup of commands into the semigroup of morphisms of data semi-
group. Then semidirect product C oD is C ×D with the following operations:

〈c1, d1〉 ◦ 〈c2, d2〉 = 〈c1 ◦ c2, d1 ◦ (d2 (c2 ϕ))〉
〈c1, d1〉 ? 〈c2, d2〉 = 〈c1 ? c2, d1 ? (d2 (c2 ϕ))〉 .

This is a generalization of the semidirect product for semigroups.
Now we introduce data types and their connectors taking into account that

each data is also an action and that there will be no direct information or control
flow from one type to other type.

Definition 10. Type systems on GAPS is a system of subGAPSes Ti such
that if i 6= j, a ∈ Ti, b ∈ Tj then (a ? b) = 0 and Ti ∩ Tj ⊇ {0}.

Connector (between Ti and TJ) is an element c not belonging to any type
such that if (a ? c) = b 6= 0 then there are i 6= j such that a ∈ Ti, b ∈ Tj.

Dual T ′i to type Ti is a GAPS for which there is a bijection to Ti x↔ xprime
such that if (x?y) = z then (z′?yprime)e = x′. Dual is perfect if (x◦y)′ = (y′◦x′.

Mirror is a connector m such that if (a ? m) = b, a ∈ Ti, b ∈ Tj then
(b′ ?m) = a′. Mirror is perfect if it is connector between Ti and its perfect dual
T ′i .

Reversive type is a subGAPS R for which there exists the ideal mirror M
such that for each x, y ∈ R

((x ? y)′ ? (y ? M)) = x′ ((x′ ? (y ? M))′ ? y) = x.

Crystal is a subGAPS where ? forms a group.
Pipe is a connector p such that (x ? p) = y 6= 0 ⊃ (y ? p) = 0.
Result element of type Ti is a left zero of Ti according to both operations.
Interruption structure is a type with a carrier T×{1, 2} where T is GAPS,

there are no results in T except maybe 0 and operations are defined as follows:

(〈a, 1〉 ? 〈b, x〉) = 〈(a ? b), x〉 ; (11)

(〈a, 2〉 ? 〈b, y〉) = 〈a, 2〉 if b 6= 0 (12)

Wheel is an interruption structure based on group Zn.
Interruption controlled type is a system of type Ti, interruption structure

S and the pipe p between Ti and {1, 2} such that (x ? p) = 1 if x is not a result
and (x ? p) = 2 if x is a result.
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Interruption controlled type can be easily represented through semidirect
product but in this representation the pipe (which is necessary for effective
program or physical realization) is hidden and the number of elements grows
essentially. Each type can be transformed into a type with a given subset of
results not disturbing the actions giving other than a result. Using these elements
we sometimes can reduce a very complex GAPS to a composition of types,
mirrors, pipes, semidirect products and interruption controls. We need no loops
and conditional statements here.

An example below shows how to compute a very large power of an element
of a given complex algebraic construct through a precomputed representation
of power in Fibonacci system. Almost all actions in this program (system) are
completely invertible (reversive) if given algebra of data is reversive. Only the
initialization of the system and the final interruption are non-invertible.

Example 17. Let us try to apply the same action a large number of times. This
corresponds to computing a ◦ bω in a group. Then ω is represented in Fibonacci
system. This can be easily made by usual computer. Let k be the number of bits
in the representation of ω. The two predicates are computed and transferred to
a reversive program: (i fib odd), (i fib even). The first one is 1 iff i is odd
and the corresponding digit is equal to 1. (i fib even) is the same for even
indexes.

Type loop is resulted from the additive group of integers making integer
0 its output value. Pipe sends its interrupt to externally implemented (maybe
physically) group tp which is controlled by two boolean commands exchanging
commutation of values during compositions, implemented by mirrors and de-
scribed as conditional operators. These mirrors use two precomputed arrays of
booleans to commute inputs of the next operations.

PROGRAM Fibonacci power
DEFINITIONS
int atom n
GROUP tn: external nooutputs
tp atom var a,b,d
tp atom e
(tp,tp) var c is (a,b)
constant e=E
INTERRUPTOR int loop output (0);
loop atom k
int atom var i [0..k] guarded
PIPE(interruption) p: (k,tn); boolean atom l;
predicate [i] fib odd, fib even
END DEFINITIONS

INPUT
read a, k
b← a
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i ← 1
l ← TRUE
d ← E
read fib odd, fib even
END INPUT

{i;1},
{l; ⊕ true}
par sync (k,tp,i)
{
tp{
{c; ◦ if l then (e,a) else (b,e) fi};
{d; ◦ if (i fib odd) then

a else if (i fib odd) then b else e
fi fi};

}
k{+ (-1)};
i{+ (1)};
}

OUTPUT
write d
END OUTPUT

Rough description of implementation of this program is given on fig. 4

6 Conclusion

The main mathematical result of this paper is Theorem 3. It states that many
kinds of programs and other computing schemes can be viewed as GAPS and
fully states conditions when a (partially described) system of transformations
can be correct for the given system. For example we need no descriptions of
usual programming languages here because they were described by the λ-calculus
which is GAPS.

The last section shows that complex algebras often can be reduced to struc-
tures formed with simpler ones in a way like to analog computers and structured
programming. Here is a big amount of open problems because (say) a systematic
mathematical theory of finite approximations for infinite algebraic systems do
not exists now (even for groups).

Maybe the most valuable property of GAPS is that they can be easily
adopted to describe functionally restricted classes of programs and computa-
tions. Some advanced results in this direction (for reversive, reversible, com-
pletely non-invertible programs and dynamic systems) are presented in [17, 18].
It appears now that algebraic programming and computing is the most general
existing concept and it is very flexible.
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Fig. 4. Program for Fibonacci-based computation
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Unfortunately using algebraic models and concepts demands deep knowledge
of abstract algebra and category theory and completely another way of thinking
then usual Turing-based algorithms and even then Lisp, Refal or Prolog.

Author wishes to thank prof. R. Glück for discussions during which the alge-
braic concept arose, PSI RAS for support an extremely non-conformist research,
his followers A. Nepejvoda and V. Atamanov for their valuable developments in
this completely unexplored domain.
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