
Russian Academy of Sciences
Ailamazyan Program Systems Institute

Fourth International

Valentin Turchin

Workshop on Metacomputation

Proceedings
Pereslavl-Zalessky, Russia, June 29 – July 3, 2014

Pereslavl-Zalessky

УДК 004.42(063)
ББК 22.18

Ч-52

Fourth International Valentin Turchin Workshop on Metacomputa-
tion // Proceedings of the Fourth International Valentin Turchin Workshop on
Metacomputation. Pereslavl-Zalessky, Russia, June 29 – July 3, 2014 / Edited
by A. V. Klimov and S. A. Romamenko. — Pereslavl Zalessky: Publishing House
“University of Pereslavl”, 2014, 256 p. — ISBN 978-5-901795-31-6

Четвертый международный семинар по метавычислениям имени
В.Ф. Турчина // Сборник трудов Четвертого международного семинара по
метавычислениям имени В.Ф. Турчина, г. Переславль-Залесский, 29 июня –
3 июля 2014 г. / Под редакцией А.В. Климова и С.А. Романенко. — Переславль-
Залесский: Издательство «Университет города Переславля», 2014, 256 с. —
ISBN 978-5-901795-31-6

c© 2014 Ailamazyan Program Systems Institute of RAS
Институт программных систем имени А.К. Айламазяна РАН, 2014

ISBN 978-5-901795-31-6

Valentin Turchin
(1931–2010)

Preface

The Fourth International Valentin Turchin Workshop on Metacomputation,
META 2014, was held on June 29 – July 3, 2014 in Pereslavl-Zalessky. It be-
longs to a series of workshops organized biannually by Ailamazyan Program
Systems Institute of Russian Academy of Sciences and Ailamazyan University
of Pereslavl.

The workshops are devoted to the memory of Valentin Turchin, a founder
of metacomputation, the area of computer science dealing with manipulation of
programs as data objects, various program analysis and transformation tech-
niques.

The topics of interest of the workshops include supercompilation, partial eval-
uation, distillation, mixed computation, generalized partial computation, slicing,
verification, mathematical problems related to these topics, their applications,
as well as cross-fertilization with other modern research and development direc-
tions.

Traditionally each of the workshops starts with a Valentin Turchin memorial
session, in which talks about his personality and scientific and philosophical
legacy are given.

The papers in these proceedings belong to the following topics.

Valentin Turchin memorial

– Andrei V. Klimov. On Valentin Turchin’s Works on Cybernetic Philosophy,
Computer Science and Mathematics

Supercompilation and distillation

– Sergei A. Grechanik, Ilya G. Klyuchnikov, and Sergei A. Romanenko. Staged
Multi-Result Supercompilation: Filtering by Transformation

– Jun Inoue. Supercompiling with Staging

– Neil D. Jones and G. W. Hamilton. Towards Understanding Superlinear Speed-
up by Distillation

Verification and proving properties of programs and metaprograms

– Sergei A. Grechanik. Inductive Prover Based on Equality Saturation for a
Lazy Functional Language (Extended Version)

– Dimitur Nikolaev Krustev. An Approach for Modular Verification of Multi-
Result Supercompilers (Work in Progress)

– Andrew M. Mironov. A Method of a Proof of Observational Equivalence of
Processes

Mathematical topics related to metacompuation

– Antonina N. Nepejvoda. Turchin’s Relation and Subsequence Relation on
Traces Generated by Prefix Grammars

– Nikolai N. Nepejvoda. Algebraic Structures of Programs: First Steps to Al-
gebraic Programming

Practical metacompuation and applications

– Ilya G. Klyuchnikov. Nullness Analysis of Java Bytecode via Supercompila-
tion over Abstract Values

– Michael Dever and G. W. Hamilton. AutoPar: Automating the Paralleliza-
tion of Functional Programs

– Venkatesh Kannan and G. W. Hamilton. Extracting Data Parallel Computa-
tions from Distilled Programs

– Arkady V. Klimov. Construction of Exact Polyhedral Model for Affine Pro-
grams with Data Dependent Conditions

The files of the papers and presentations of this and the previous workshops
as well as other information can be found at the META sites:

– META 2008: http://meta2008.pereslavl.ru/

– META 2010: http://meta2010.pereslavl.ru/

– META 2012: http://meta2012.pereslavl.ru/

– META 2014: http://meta2014.pereslavl.ru/

June 2014 Andrei Klimov
Sergei Romanenko

Organization

Workshop Chair

Sergei Abramov, Ailamazyan Program Systems Institute of RAS, Russia

Program Committee Chairs

Andrei Klimov, Keldysh Institute of Applied Mathematics of RAS, Russia
Sergei Romanenko, Keldysh Institute of Applied Mathematics of RAS, Russia

Program Committee

Mikhail Bulyonkov, A. P. Ershov Institute of Informatics Systems of RAS, Russia
Robert Glück, University of Copenhagen, Denmark
Geoff Hamilton, Dublin City University, Republic of Ireland
Arkady Klimov, Institute for Design Problems in Microelectronics of RAS
Ilya Klyuchnikov, JetBrains; Keldysh Institute of Applied Mathematics of RAS
Dimitur Krustev, IGE+XAO Balkan, Bulgaria
Alexei Lisitsa, Liverpool University, Great Britain
Neil Mitchell, Standard Charted, United Kingdom
Antonina Nepeivoda, Ailamazyan Program Systems Institute of RAS, Russia
Peter Sestoft, IT University of Copenhagen, Denmark
Alexander Slesarenko, Keldysh Institute of Applied Mathematics of RAS, Russia
Morten Sørensen, Formalit, Denmark

Invited Speaker

Neil D. Jones, Professor Emeritus of the University of Copenhagen, Denmark

Sponsoring Organizations

Russian Academy of Sciences

Russian Foundation for Basic Research (grant № 14-07-06026-г)

Table of Contents

AutoPar: Automating the Parallelization of Functional Programs 11
Michael Dever and G. W. Hamilton

Inductive Prover Based on Equality Saturation for a Lazy Functional
Language (Extended Version) . 26

Sergei A. Grechanik

Staged Multi-Result Supercompilation: Filtering by Transformation 54
Sergei A. Grechanik, Ilya G. Klyuchnikov, and Sergei A. Romanenko

Supercompiling with Staging . 79
Jun Inoue

Towards Understanding Superlinear Speedup by Distillation 94
Neil D. Jones and G. W. Hamilton

Extracting Data Parallel Computations from Distilled Programs 110
Venkatesh Kannan and G. W. Hamilton

On Valentin Turchin’s Works on Cybernetic Philosophy, Computer
Science and Mathematics . 124

Andrei V. Klimov

Construction of Exact Polyhedral Model for Affine Programs with Data
Dependent Conditions . 136

Arkady V. Klimov

Nullness Analysis of Java Bytecode via Supercompilation over Abstract
Values . 161

Ilya G. Klyuchnikov

An Approach for Modular Verification of Multi-Result Supercompilers
(Work in Progress) . 177

Dimitur Nikolaev Krustev

A Method of a Proof of Observational Equivalence of Processes 194
Andrew M. Mironov

Turchin’s Relation and Subsequence Relation on Traces Generated by
Prefix Grammars . 223

Antonina N. Nepejvoda

Algebraic Structures of Programs: First Steps to Algebraic Programming 236
Nikolai N. Nepejvoda

AutoPar: Automatic Parallelization of Functional
Programs

Michael Dever & G. W. Hamilton
{mdever, hamilton}@computing.dcu.ie

Dublin City University

Abstract. In this paper we present a novel, fully automatic transforma-
tion technique which parallelizes functional programs defined using any
data-type. In order to parallelize these programs our technique first de-
rives conversion functions which allow the data used by a given program
to be well-partitioned. Following this the given program is redefined to
make use of this well-partitioned data. Finally, the resulting program is
explicitly parallelized. In addition to the automatic parallelization tech-
nique, we also present the results of applying the technique to a sample
program.

1 Introduction

As the pervasiveness of parallel architectures in computing increases, so does the
need for efficiently implemented parallel software. However, the development of
parallel software is inherently more difficult than that of sequential software
as developers are typically comfortable developing sequentially and can have
problems thinking in a parallel setting [29]. Yet, as the limitations of single-core
processor speeds are reached, the developer has no choice but to reach for parallel
implementations to obtain the required performance increases.

Functional languages are well suited to parallelization due to their lack of
side-effects, a result of which is that their functions are stateless. Therefore,
one process executing a pure function on a set of data can have no impact on
another process executing a function on another set of data as long as there are no
data dependencies between them. This gives functional programs a semantically
transparent implicit task parallelism.

Due to the nature of functional languages, many functions make use of in-
termediate data-structures to generate results. The use of intermediate data-
structures can often result in inefficiencies, both in terms of execution time and
memory performance [38]. When evaluated in a parallel environment, the use of
intermediate data-structures can result in unnecessary communication between
parallel processes. Elimination of these intermediate data-structures is the moti-
vation for many functional language program transformation techniques, such as
that of distillation [14, 16] which is capable of obtaining a super-linear increase
in efficiency.

The automatic parallelization technique presented in this paper makes use of
our previously published automatic partitioning technique [9], which facilitates

12 Michael Dever, G. W. Hamilton

the partitioning of data of any type into a corresponding join-list. This is used
to generate functions which allow data of any type to be converted into a well-
partitioned join-list and also allow the data in a well-partitioned join-list to be
converted back to its original form.

Following the definition of these functions, we distill the given program which
results in an equivalent program defined in terms of a well-partitioned join-list, in
which the use of intermediate data-structures has been eliminated. Upon distill-
ing a program defined on a well-partitioned join-list, we then extract the paral-
lelizable expressions in the program. Finally, we apply another transformation to
the distilled program which parallelizes expressions operating on well-partitioned
join-lists.

The remainder of this paper is structured as follows: Section 2 describes
the language used throughout this paper. Section 3 describes how we imple-
ment explicit parallelization using Glasgow parallel Haskell. Section 4 presents
an overview of the distillation program transformation technique and describes
how we use distillation to convert programs into equivalent programs defined
on well-partitioned data. Section 5 describes our automatic parallelization tech-
nique. Section 6 presents the application of the automatic parallelization tech-
nique to a sample program. Section 7 presents a selection of related work and
compares our techniques with these works and Section 8 presents our conclu-
sions.

2 Language

The simple higher-order language to be used throughout this paper is shown in
Fig. 1. Within this language, a data-type T can be defined with the constructors
c1, . . . , cm each of which may include other types as parameters. Polymorphism
is supported in this language via the use of type variables, α. Constructors are
of a fixed arity, and within c e1 . . . ek, k must be equal to constructor c’s arity.
We use (e :: t) to denote an expression e of type t. Case expressions must only
have non-nested patterns. Techniques exist to transform nested patterns into
equivalent non-nested versions [1, 37].

Within this language, we use let x1 = e1 . . . xn = en in eo to represent a
series of nested let statements as shown below:

let x1 = e1 . . . xn = en in eo ≡ let x1 = e1
...
let xn = en
in e0

The type definitions for cons-lists and join-lists are as shown in Fig. 2. We use
the usual Haskell notation when dealing with cons-lists: [] represents an empty
cons-list, (Nil), [x] represents a cons-list containing one element, (Cons x Nil),
and (x : xs) represents the cons-list containing the head x and the tail xs,
(Cons x xs).

AutoPar: Automatic Parallelization of Functional Programs 13

t ::= α Type Variable
| T t1 . . . tg Type Application

data T α1 . . . αg ::= c1 t11 . . . t1n1
Data-Type

...
| cm tm1 . . . tmnm

e ::= x Variable
| c e1 . . . ek Constructor
| f Function
| λx.e Lambda Abstraction
| e0 e1 Application
| case e0 of p1 → e1 | . . . | pk → ek Case Expression
| let x1 = e1 in e0 Let Expression
| e0 where f1 = e1 . . . fn = en Where Expression

p ::= c x1 . . . xk Pattern

Fig. 1: Language Definition

data List a ::= Nil
| Cons a (List a)

data JList a ::= Singleton a
| Join (JList a) (JList a)

Fig. 2: cons-List and join-List Type Definitions

3 Glasgow Parallel Haskell

In order to parallelize the various programs described in this paper we make use
of Glasgow parallel Haskell (GpH) [36] which is an extension to Haskell. GpH
supports parallelism by using strategies for controlling the parallelism involved.
Parallelism is introduced via sparking (applying the par strategy) and evalu-
ation order is determined by applying the pseq strategy. As an example, the
expression x ′par′ y may spark the evaluation of x in parallel with that of y,
and is semantically equivalent to y. As a result of this, when using x ′par′ y,
the developer indicates that they believe evaluating x in parallel may be useful,
but leave it up to the runtime to determine whether or not the evaluation of x
is run in parallel with that of y [25]. pseq is used to control evaluation order as
x ′pseq′ y will strictly evaluate x before y. Usually, this is used because y cannot
be evaluated until x has been.

As an example, the expression x ′par′ (y ′pseq′ x+ y) sparks the evaluation
of x in parallel with the strict evaluation of y. After y has been evaluated, x+ y
is then evaluated. If the parallel evaluation of x has not been completed at this

14 Michael Dever, G. W. Hamilton

point, then it will be evaluated sequentially as part of x+ y. As a result of this
x ′par′ (y ′pseq′ x+ y) is semantically equivalent to x+ y, but we may see some
performance gain from sparking the evaluation of x in parallel. Below is a simple
example of the use of GpH, which calculates fibonacci numbers in parallel:

fib = λx.case x of
0 → 1
1 → 1
n → let x = fib (n − 1)

in let y = fib (n − 2)
in x ‘par ′ (y ‘pseq ′ x + y)

Given a number x, the function fib sparks the evaluation of fib (n − 1)
to weak-head normal form in parallel with the full evaluation of fib (n − 2).
When fib (n− 2) has been fully evaluated, it is then added to the result of the
evaluation of fib (n− 1). fib (n− 1) can be fully evaluated in parallel by having
the rdeepseq strategy applied to it.

We have selected Glasgow parallel Haskell for our implementation language,
due to its conceptual simplicity, its semantic transparency and its separation
of algorithm and strategy. Another reason for the selection of Glasgow parallel
Haskell is its management of threads: it handles the creation/deletion of threads,
and determines whether or not a thread should be sparked depending on the
number of threads currently executing.

4 Transforming Data to Well-Partitioned Join-Lists

There are many existing automated parallelization techniques [2–7, 10, 19–22,
26, 30, 31, 35], which, while powerful, require that their input programs are de-
fined using a cons-list, for which there is a straightforward conversion to a well-
partitioned join-list. This is an unreasonable burden to place upon a developer
as it may not be intuitive or practical to define their program in terms of a
cons-list.

To solve this problem we have previously defined a novel transformation
technique that allows for the automatic partitioning of an instance of any data-
type [9]. A high-level overview of the automatic partitioning technique is pre-
sented in Figure 3. We combine this technique with distillation in order to au-
tomatically convert a given program into one defined on well-partitioned data.
We do not give a full description of the automatic partitioning technique here,
it is sufficient to know that it consists of the following four steps:

1. Given a program defined on an instantiated data-type, τ , we use the defi-
nition of τ to define a corresponding data-type, τ ′, instances of which will
contain the non-inductive components from data of type τ .

2. Derive a partitioning function, partitionτ , which will allow data of type τ to
be converted into a well-partitioned join-list containing data of type τ ′.

AutoPar: Automatic Parallelization of Functional Programs 15

3. Derive a rebuilding function, rebuildτ , which will convert a join-list contain-
ing data of type τ ′ into data of type τ .

4. Distill a program equivalent to the given program which is defined on a
well-partitioned join-list.

Using these four steps, we can automatically convert a given program into
an equivalent program defined on well-partitioned data. Section 4.1 presents
an overview of the distillation program transformation technique. Section 4.2
describes how we combine distillation and the automatic partitioning technique
in order to convert a program into an equivalent one defined on well-partitioned
data.

x :: τ x′ :: JList τ ′

partitionτ

rebuildτ

Fig. 3: Data Partitioning Functions

4.1 Distillation

Distillation [14, 16–18] is a powerful fold/unfold based program transformation
technique which eliminates intermediate data-structures from higher-order func-
tional programs. It is capable of obtaining a super-linear increase in efficiency
and is significantly more powerful than the positive-supercompilation program
transformation technique [15, 32, 33] which is only capable of obtaining a linear
increase in efficiency [34].

Distillation essentially performs normal-order reduction according to the re-
duction rules defined in [14]. Folding is performed on encountering a renaming of
a previously encountered expression, and generalization is performed to ensure
the termination of the transformation process. The expressions compared prior
to folding or generalization within the distillation transformation are the results
of symbolic evaluation of the expressions, whereas in positive-supercompilation,
the syntax of the expressions are compared. Generalization is performed upon
encountering an expression which contains an embedding of a previously encoun-
tered expression. This is performed according to the homeomorphic embedding
relation, which is used to detect divergence within term rewriting systems [8].

We do not give a full description of the distillation algorithm here; details
can be found in [14]. The distillation algorithm is not required to understand

16 Michael Dever, G. W. Hamilton

the remainder of this paper, it is sufficient to know that distillation can be used
to eliminate the use of intermediate data structures in expressions.

4.2 Distilling Programs on Well-Partitioned Data

Given a sequential program, f , defined using an instantiated data-type, τ , we
first define a conversion function which will convert data of type τ into a well
partitioned join-list, partitionτ , and one which will convert a join-list into data
of type τ , rebuildτ , as depicted in Figure 3.

By applying distillation, denoted D, to the composition of f and rebuildτ ,
DJf ◦ rebuildτ K, we can automatically generate a function, fwp, which is equiv-
alent to f but is defined on a well-partitioned join-list containing data of type
τ ′. A high level overview of this process is presented in Figure 4.

x′ :: JList τ ′ x :: τ Result
rebuildτ f

x′ :: JList τ ′ Result
fwp

Distillation

Fig. 4: Distillation of Programs on Well-Partitioned Data

Obviously, fwp is defined on a well-partitioned join-list, whereas f is de-
fined on data of type τ . We can generate the correct input for fwp by applying
partitionτ to the input of f and using the result of this as the input to fwp.

5 Automatically Parallelizing Functional Programs

Given a program, once we have distilled an equivalent program defined on a
well-partitioned join-list, this can be transformed into an equivalent explicitly
parallelized program defined on a well-partitioned join-list. Our novel paral-
lelization technique consists of two steps:

1. Ensure that expressions which are parallelizable are independent.

AutoPar: Automatic Parallelization of Functional Programs 17

2. Explicitly parallelize the resulting parallelizable expressions.

Using these two steps, we can automatically convert a given program into
an equivalent explicitly parallelized program that operates on well-partitioned
data. Section 5.1 describes the process by which we ensure that expressions which
are parallelizable are independent and Section 5.2 describes the process which
explictly parallelizes a program defined on well-partitioned data.

5.1 Extracting Independent Parallelizable Expressions

Prior to explicitly parallelizing the output of distillation we must first make sure
that any expressions that will be parallelized are independent of each other.
Given an expression, e, we define its parallelizable expressions as the set of
unique maximal sub-expressions of e which operate on a single join-list. That
is, each parallelizable expression of e must be the largest sub-expression of e
which operates on a join-list and is not a variable. Once we have identified all
the parallelizable expressions within e, these are extracted into a let statement
which is equivalent to e.

As an example, consider the function f , as defined below:

f = λx. λn.case x of
Join l r → f r (f l n)

Within f , both the join-lists l and r are evaluated, therefore we identify the
parallelizable expressions in which they are evaluated, f l n and f r respectively.
These are then extracted into a let statement equivalent to f r (f l n) as follows:

f = λx. λn.case x of
Join l r → let x1 = f l n

x2 = f r
in x2 x1

As the output of distillation contains no let statements, this process allows
us to explicitly parallelize expressions that operate on well-partitioned join-lists,
as any extracted expression within a let statement must be a parallelizable
expression.

5.2 Explicit Parallelization of Functional Programs

Given a distilled program which operates on a well-partitioned join-list, fwp,
which has had its parallelizable expressions made independent, the final step
of the automatic parallelization technique is to apply another transformation,
Tp, to fwp in order to explicitly parallelize expressions which operate on well-
partitioned join-lists. The result of this transformation is a function, fpar, which
is equivalent to f but is defined on a well-partitioned join-list and has been
explicitly parallelized. A high-level overview of this process is shown in Figure 5.
The transformation rules for Tp are defined as shown in Fig. 6.

18 Michael Dever, G. W. Hamilton

x′ :: JList τ ′ Result
fwp

x′ :: JList τ ′ Result
fpar

Parallelization

Fig. 5: Parallelization of Program defined on Well-Partitioned Data

The majority of the transformation rules should be self explanatory: vari-
ables, abstraction variables, constructor names are left unmodified. The bodies
of constructors, applications, abstractions and function definitions are trans-
formed according to the parallelization rules, as are the selectors and branch
expressions of case statements.

The most interesting of the presented transformation rules is the one that
deals with let statements. As each extracted expression within a let statement
is a parallelizable expression its evaluation should be sparked in parallel. How-
ever, as these may contain further parallelizable expressions, we first apply the
parallelization algorithm to the extracted expressions, as well as to the body of
the let statement. Finally, we spark the evaluation of all but one of the paral-
lelizable expressions in parallel with the full evaluation of the last parallelizable
expression, xn. This means that the evaluation of the parallelized version of e0
will not begin until xn has been fully evaluated, at which point, hopefully, the
remaining parallelized expressions will have been evaluated in parallel.

As an example, consider again the definition of f shown previously, which
has had its parallelized expressions extracted. Application of Tp to f results in
the definition of fpar shown below:

fpar = λx. λn.case x of
Join l r → let x1 = fpar l n

x2 = fpar r
in x1

′par′ x2 ′pseq′ x2 x1

AutoPar: Automatic Parallelization of Functional Programs 19

TpJxK = x
TpJc e1 . . . enK = c TpJe1K . . . TpJenK
TpJfK = f
TpJλx.eK = λx.TpJeK
TpJe0 e1K = TpJe0K TpJe1K
TpJcase x of p1 → e1 | . . . | pk → ekK= case x of p1 → TpJe1K | . . . | pk → TpJekK
TpJe0 where f1 = e1 . . . fn = enK = TpJe0K where f1 = TpJe1K . . . fn = TpJenK
TpJlet x1 = e1 . . . xn = enin e0K

=





let x1 = TpJe1K
...

xn = TpJenK
in x1

′par′ . . . xn−1
′par′ xn

′pseq′ TpJe0K

Fig. 6: Transformation Rules for Parallelization

6 Automatic Parallelization of a Sample Program

This section presents an example of the application of the automatic paralleliza-
tion technique to the program sumList, which calculates the sum of a cons-list
of numbers, as shown below:

sumList = λxs.case xs of
Nil → 0
Cons x xs→ x+ sumList xs

The first step in applying the automatic parallelization technique to sumList
is to derive the functions for converting data of type List Int to and from
a well-partitioned join-list containing data of type List′ using our automatic
partitioning technique, the results of which are shown below:

data List′ ::= Nil′

| Cons′ Int

partition(List Int) = partition ◦ flatten(List Int)

flatten(List Int) = λxs.case xs of
Nil → [Nil′]
Cons x1 x2 → [Cons′ x1] ++ flatten(List Int) x2

rebuild(List Int) = fst ◦ unflatten(List Int) ◦ rebuild

unflatten(List Int) = λxs.case xs of
(x : xs)→ case x of

Nil′ → (Nil, xs)
Cons′ x1 → case unflatten(List Int) xs of

(x2, xs2)→ (Cons x1 x2, xs2)

20 Michael Dever, G. W. Hamilton

After generating these conversion functions, we compose sumList with
rebuild(List Int) and distill this composition, DJsumList ◦ rebuild(List Int)K, to
generate an efficient sequential program equivalent to sumList defined on a
partitioned join-list. The resulting function, sumListwp is shown below:

sumListwp = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → sumList′wp l (sumListwp r)

sumList′wp = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → sumList′wp l (sumList
′
wp r n)

After defining sumListwp, we extract its parallelizable expressions, resulting
in the definition of sumListwp, shown below:

sumListwp = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → let l′ = sumList′wp l

r′ = sumListwp r
in l′ r′

sumList′wp = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → let l′ = sumList′wp l
r′ = sumList′wp r n

in l′ r′

Finally, after defining sumListwp, and extracting its parallelizable expres-
sions, we apply Tp to sumListwp in order to explicitly parallelize its operations
on well-partitioned join-lists. The resulting definition of sumListpar is shown
below:

AutoPar: Automatic Parallelization of Functional Programs 21

sumListpar = λx.case x of
Singleton x→ case x of

Nil′ → 0
Join l r → let l′ = sumList′par l

r′ = sumListpar r
in l′ ′par′ r′ ′pseq′ l′ r′

sumList′par = λx n.case x of
Singleton x→ case x of

Nil′ → n
Cons′ x→ x+ n

Join l r → let l′ = sumList′par l
r′ = sumList′par r n

in l′ ′par′ r′ ′pseq′ l′ r′

By making distillation aware of the definition of the + operator, it can derive
the necessary associativity that allows for each child of a Join to be evaluated in
parallel. It is worth noting that in the case of the above program, when evaluating
the left child of a Join we create a partial application which can be evaluated
in parallel with the evaluation of the right child. This partial application is
equivalent to (λr.l + r), where r is the result of the evaluation of the right
operand.

As both children are roughly equal in size, each parallel process created will
have a roughly equal amount of work to do. In contrast, with respect to the orig-
inal sumList defined on cons-lists, if the processing of both x and sumList xs
are performed in parallel, one process will have one element of the list to eval-
uate, while the other will have the remainder of the list to evaluate, which is
undesirable.

7 Related Work

There are many existing works that aim to automate the parallelization process,
however many of these works simply assume or require that they are provided
with data for which there is a straight-forward conversion to a well-partitioned
form. For example, list-homomorphisms [2–4, 10, 26] and their derivative works
[5, 12, 13, 19–22, 30, 31] require that they are supplied with data in the form
of a cons-list for which there is a simple conversion to a well-partitioned join-
list. These techniques also require the specification of associative/distributive
operators to be used as part of the parallelization process, which places more
work in the hands of the developer.

Chin et al.’s [6, 7, 35] work on parallelization via context-preservation also
makes use of join-lists as part of its parallelization process. Given a program, this
technique derives two programs in pre-parallel form, which are then generalized.
The resulting generalized function may contain undefined functions which can be
defined using an inductive derivation. While such an approach is indeed powerful
and does allow such complex functions as those with accumulating parameters,

22 Michael Dever, G. W. Hamilton

nested recursion and conditional statements, it also has its drawbacks. One such
drawback is that it requires that associativity and distributivity be specified for
primitive functions by the developer. The technique is therefore semi-automatic
and a fully automatic technique would be more desirable. While [35] presents
an informal overview of the technique, a more concrete version was specified
by Chin. et. al. in [6, 7]. However, these more formal versions are still only
semi-automatic and are defined for a first-order language and require that the
associativity/distributivity of operators be specified. This technique is also only
applicable to list-paramorphisms [27] and while this encompasses a large number
of function definitions, it is unrealistic to expect developers to define functions
in this form. Further restrictions also exist in the transformation technique as
the context-preservation property must hold in order to ensure the function can
be parallelized.

While these techniques are certainly powerful, requiring that programs are
only developed in terms of cons-lists is an unrealistic burden to place upon the
developer, as is requiring that the associativity/distributivity of operators be
specified. An important limitation to these techniques is that they are only ap-
plicable to lists, excluding the large class of programs that are defined on trees.
One approach to parallelizing trees is that of Morihata et. al.’s [28] redefinition
of the third homomorphism theorem [11] which is generalized to apply to trees.
This approach makes use of zippers [23] to model the path from the root of a
tree to an arbitrary leaf. While this approach presents an interesting approach
to partitioning the data contained within a binary tree, the partitioning tech-
nique is quite complicated and relies upon zippers. It also presents no concrete
methodology for generating zippers from binary-trees and assumes that the de-
veloper has provided such a function. It also requires that the user specify two
functions in upward and downward form [28] which is quite restrictive so it is
not realistic to expect a developer to define their programs in such a manner.

8 Conclusion

In conclusion, this paper has presented a novel, fully automatic parallelization
technique for functional programs defined on any data-type. By defining a tech-
nique by which a developer can automatically parallelize programs, the difficul-
ties associated with the parallelization process can be removed from the devel-
oper, who can continue developing software within the ‘comfortable’ sequential
side of development and have equivalent parallel software derived automatically
as needed.

Where existing automated parallelization techniques are restrictive with re-
spect to the form of their input programs and the types they are defined on, the
presented parallelization technique holds no such restrictions due to its use of
our automatic data partitioning technique which converts data of any type into
a well-partitioned form. To the best of the authors knowledge this is the first
automated parallelization technique that is applicable to programs defined on
any data-type.

AutoPar: Automatic Parallelization of Functional Programs 23

One potential problem with our automatic parallelization technique is that it
may get down to such a fine level of granularity of divide-and-conquer parallelism,
that it is merely sparking a large number of trivial processes in parallel. This is
obviously undesirable due to being wasteful of resources and potentially having
a negative impact on efficiency due to the overheads associated with sparking
parallel processes.

A solution to this problem is to control the level of granularity via the use of
thresholding to govern the sparking of new parallel processes. Such an approach
will also give the developer a measure of control over the parallelism obtained in
the output program. Thresholding can be used to prevent the parallelization of
join-lists whose size falls below a certain point. Research is ongoing to determine
an optimal thresholding strategy for our automatically parallelized programs.

While our research is focused on divide-and-conquer task parallelization, it
is also worth noting the potential for the system to be used as part of a data-
parallel approach. If partition(T T1...Tg) is redefined to generate a flattened list
representation of the input data-structure, this could then be partitioned into
chunks and distributed across a data-parallel architecture, such as a GPU. This
would require a redefinition of Tp in order to support such an approach, which
would implement the data-parallelism in the resulting program ensuring that the
same function is applied to each chunk of data in parallel. Research is currently
underway to extend the presented work to support automatic partitioning to
enable GPU parallelization [24].

Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant
10/CE2/I303_1 to Lero - the Irish Software Engineering Research Centre.

References

1. L. Augustsson. Compiling Pattern Matching. Functional Programming Languages
and Computer Architecture, 1985.

2. R. Backhouse. An Exploration of the Bird-Meertens Formalism. Technical report,
In STOP Summer School on Constructive Algorithmics, Abeland, 1989.

3. R. Bird. Constructive Functional Programming. STOP Summer School on Con-
structive Algorithmics, 1989.

4. R. S. Bird. An Introduction to the Theory of Lists. In Proceedings of the NATO
Advanced Study Institute on Logic of programming and calculi of discrete design,
pages 5–42, New York, NY, USA, 1987. Springer-Verlag New York, Inc.

5. G. E. Blelloch. Scans as Primitive Operations. IEEE Transactions on Computers,
38(11):1526–1538, 1989.

6. W.-N. Chin, S.-C. Khoo, Z. Hu, and M. Takeichi. Deriving Parallel Codes via
Invariants. In J. Palsberg, editor, Static Analysis, volume 1824 of Lecture Notes in
Computer Science, pages 75–94. Springer Berlin Heidelberg, 2000.

7. W. N. Chin, A. Takano, Z. Hu, W. ngan Chin, A. Takano, and Z. Hu. Parallelization
via Context Preservation. In In IEEE Intl Conference on Computer Languages,
pages 153–162. IEEE CS Press, 1998.

24 Michael Dever, G. W. Hamilton

8. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 243–320.
1990.

9. M. Dever and G. W. Hamilton. Automatically Partitioning Data to Facilitate
the Parallelization of Functional Programs. Proceedings of the Eight International
Andrei Ershov Memorial Conference, July 2014.

10. M. Fokkinga. A gentle introduction to category theory — the calculational ap-
proach. In Lecture Notes of the STOP 1992 Summerschool on Constructive Algo-
rithmics, pages 1–72. University of Utrecht, September 1992.

11. J. Gibbons. The Third Homomorphism Theorem. Journal of Functional Program-
ming, 6(4):657–665, 1996. Earlier version appeared in C.B. Jay, editor, Computing:
The Australian Theory Seminar, Sydney, December 1994, p. 62–69.

12. S. Gorlatch. Systematic Efficient Parallelization of Scan and Other List Homomor-
phisms. In In Annual European Conference on Parallel Processing, LNCS 1124,
pages 401–408. Springer-Verlag, 1996.

13. S. Gorlatch. Systematic Extraction and Implementation of Divide-and-Conquer
Parallelism. In Programming languages: Implementation, Logics and Programs,
Lecture Notes in Computer Science 1140, pages 274–288. Springer-Verlag, 1996.

14. G. Hamilton and N. Jones. Distillation and Labelled Transition Systems. Pro-
ceedings of the ACM Workshop on Partial Evaluation and Program Manipulation,
pages 15–24, January 2012.

15. G. Hamilton and N. Jones. Proving the Correctness of Unfold/Fold Program Trans-
formations using Bisimulation. Lecture Notes in Computer Science, 7162:153–169,
2012.

16. G. W. Hamilton. Distillation: Extracting the Essence of Programs. Proceedings of
the ACM Workshop on Partial Evaluation and Program Manipulation, 2007.

17. G. W. Hamilton. Extracting the Essence of Distillation. Proceedings of the Sev-
enth International Andrei Ershov Memorial Conference: Perspectives of System
Informatics, 2009.

18. G. W. Hamilton and G. Mendel-Gleason. A Graph-Based Definition of Distillation.
Proceedings of the Second International Workshop on Metacomputation in Russia,
2010.

19. Z. Hu, H. Iwasaki, and M. Takechi. Formal Derivation of Efficient Parallel Pro-
grams by Construction of List Homomorphisms. ACM Trans. Program. Lang.
Syst., 19(3):444–461, May 1997.

20. Z. Hu, M. Takeichi, and W.-N. Chin. Parallelization in Calculational Forms. In
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’98, pages 316–328, New York, NY, USA, 1998. ACM.

21. Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating Efficient Parallel
Programs. In In 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 85–94, 1999.

22. Z. Hu, T. Yokoyama, and M. Takeichi. Program Optimizations and Transforma-
tions in Calculation Form. In Proceedings of the 2005 international conference on
Generative and Transformational Techniques in Software Engineering, GTTSE’05,
pages 144–168, Berlin, Heidelberg, 2006. Springer-Verlag.

23. G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, Sept. 1997.
24. V. Kannan and G. W. Hamilton. Distillation to Extract Data Parallel Compu-

tations. Proceedings of the Fourth International Valentin Turchin Workshop on
Metacomputation, July 2014.

AutoPar: Automatic Parallelization of Functional Programs 25

25. H.-W. Loidl, P. W. Trinder, K. Hammond, A. Al Zain, and C. A. Baker-Finch.
Semi-Explicit Parallel Programming in a Purely Functional Style: GpH. In
M. Alexander and B. Gardner, editors, Process Algebra for Parallel and Dis-
tributed Processing: Algebraic Languages in Specification-Based Software Devel-
opment, pages 47–76. Chapman and Hall, Dec. 2008.

26. G. Malcolm. Homomorphisms and Promotability. In Proceedings of the Interna-
tional Conference on Mathematics of Program Construction, 375th Anniversary of
the Groningen University, pages 335–347, London, UK, 1989. Springer-Verlag.

27. L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424, 1992.
28. A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. The Third Homomorphism

Theorem on Trees: Downward & Upward lead to Divide-and-Conquer. In Pro-
ceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’09, pages 177–185, New York, NY, USA, 2009.
ACM.

29. D. Skillicorn. Foundations of Parallel Programming. Cambridge International
Series on Parallel Computation. Cambridge University Press, 2005.

30. D. B. Skillicorn. Architecture-Independent Parallel Computation. Computer,
23:38–50, December 1990.

31. D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model. In Software
for Parallel Computation, volume 106 of NATO ASI Series F, pages 120–133.
Springer-Verlag, 1993.

32. M. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercom-
pilation. International Logic Programming Symposium, pages 465–479, 1995.

33. M. Sørensen, R. Glück, and N. Jones. A Positive Supercompiler. Journal of
Functional Programming, 1(1), January 1993.

34. M. H. Sørensen. Turchin’s Supercompiler Revisited - An Operational Theory of
Positive Information Propagation, 1996.

35. Y. M. Teo, W.-N. Chin, and S. H. Tan. Deriving Efficient Parallel Programs for
Complex Recurrences. In Proceedings of the second international symposium on
Parallel symbolic computation, PASCO ’97, pages 101–110, New York, NY, USA,
1997. ACM.

36. P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm
+ Strategy = Parallelism. Journal of Functional Programming, 8(1):23–60, Jan.
1998.

37. P. Wadler. Efficient Compilation of Pattern Matching. In S. P. Jones, editor, The
Implementation of Functional Programming Languages., pages 78–103. Prentice-
Hall, 1987.

38. P. Wadler. Deforestation: Transforming Programs to Eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

Inductive Prover Based on Equality Saturation
for a Lazy Functional Language⋆

(Extended Version)

Sergei A. Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
sergei.grechanik@gmail.com

Abstract. The present paper shows how the idea of equality satura-
tion can be used to build an inductive prover for a non-total first-order
lazy functional language. We adapt equality saturation approach to a
functional language by using transformations borrowed from supercom-
pilation. A special transformation called merging by bisimilarity is used
to perform proof by induction of equivalence between nodes of the E-
graph. Equalities proved this way are just added to the E-graph. We
also experimentally compare our prover with HOSC, HipSpec and Zeno.

1 Introduction

Equality saturation [23] is a method of program transformation that uses a
compact representation of multiple versions of the program being transformed.
This representation is based on E-graphs (graphs whose nodes are joined into
equivalence classes [7, 18]) and allows us to represent a set of equivalent pro-
grams, consuming exponentially less memory than representing it as a plain set.
Equality saturation consists in enlarging this set of programs by applying cer-
tain axioms to the E-graph until there’s no axiom to apply or the limit of axiom
applications is reached. The axioms are applied non-destructively, i.e. they only
add information to the E-graph (by adding nodes, edges and equivalences).

Equality saturation has several applications. It can be used for program
optimization – in this case after the process of equality saturation is finished, a
single program should be extracted from the E-graph. It can also be used for
proving program equivalence (e.g. for translation validation [22]) – in this case
program extraction is not needed.

In the original papers equality saturation is applied to imperative languages,
namely Java bytecode and LLVM (although the E-graph-based intermediate rep-
resentation used there, called E-PEG, is essentially functional). In this paper we
describe how equality saturation can be applied to the task of proving equivalence

⋆ Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

Inductive Prover Based on Equality Saturation 27

of functions written in a lazy functional language, which is important for proving
algebraic properties like monad laws or some laws concerning natural numbers
and lists. We do this mainly by borrowing transformations from supercompila-
tion [21, 24]. Since many properties require proof by induction, we introduce a
special transformation called merging by bisimilarity which essentially proves by
induction that two terms are equivalent. This transformation may be applied
repeatedly, which gives an effect of discovering and proving lemmas needed for
the main goal.

Unlike tools such as HipSpec [5] and Zeno [20], we don’t instantiate the
induction scheme, but instead check the correctness of the proof graph similarly
to Agda and Foetus [3, 4]. We also fully support infinite data structures and
partial values, and we don’t assume totality. As we’ll show, proving properties
that hold only in total setting is still possible with our tool by enabling some
additional transformations, but it’s not very efficient.

The main contributions of this paper are: 1) we apply the equality saturation
approach to a lazy functional language; 2) we propose to merge classes of the
E-graph even if they represent functions equal only up to argument permutation;
3) we articulate the merging by bisimilarity transformation.

The paper is organized as follows. In Section 2 we briefly describe equality
saturation and how functional programs and sets of functional programs can be
represented by E-graphs. Then in Section 3 we discuss basic transformations
which we apply to the E-graph. Section 4 deals with the merging by bisimilarity
transformation. Section 5 discusses the order of transformation application. In
Section 6 we consider a simple example. In Section 7 we present experimental
evaluation of our prover. Section 8 discusses related work and Section 9 concludes
the paper.

The source code of our experimental prover can be found on GitHub [1].

2 Programs and E-graphs

An E-graph is a graph enriched with information about equivalence of its nodes
by means of splitting them into equivalence classes. In our case, an E-graph
essentially represents a set of (possibly recursive) terms and a set of equalities
on them, closed under reflexivity, transitivity and symmetry. If we use the
congruence closure algorithm [18], then the set of equalities will also be closed
under congruence. The E-graph representation is very efficient and often used
for solving the problem of term equivalence.

If we have some axioms about our terms, we can also apply them to the
E-graph, thus deducing new equalities from the ones already present in E-graph
(which in its turn may lead to more axiom application opportunities). This is
what equality saturation basically is. So, the process of solving the problem of
function/program equivalence using equality saturation is as follows:

1. Convert both function definitions to E-graphs and put both of them into a
single E-graph.

28 Sergei A. Grechanik

not b =
case b of
T → F
F → T

even n =
case n of
Z → T
S m → odd m

odd n =
not (even n)

(a)

odd 𝑛

subst(𝑏)

not 𝑏

case of (T, F)

F𝑥

even 𝑛

case of (Z, S 𝑚)

T

{𝑥 ↦→ 𝑛}
{𝑥
↦→
𝑏}

{𝑛 ↦→ 𝑚}

(b)

Fig. 1: A program and its graph representation

2. Transform the E-graph using some axioms (transformations) until the target
terms are in the same equivalence class or no more axioms are applicable.
This process is called saturation.

In pure equality saturation approach axioms are applied non-destructively and
result only in adding new nodes and edges, and merging of equivalence classes,
but in our prover we apply some axioms destructively, removing some nodes
and edges. This makes the result of the saturation dependent on the order of
axiom application, so we restrict it to breadth-first order (see Section 5 for more
details). This deviation is essential for performance reasons.

In this paper we will use a lazy first-order untyped subset of Haskell (in our
implementation higher-order functions are dealt with by defunctionalization).
To illustrate how programs are mapped into graphs, let’s consider the program
in Figure 1a. This program can be naturally represented as a graph, as shown in
Figure 1b. Each node represents a basic language construct (pattern matching,
constructor, variable, or explicit substitution – we’ll explain them in Section 2.1).
If a node corresponds to some named function, its name is written in the top
part of it. Some nodes are introduced to split complex expressions into basic
constructs and don’t correspond to any named functions. Recursion is simply
represented by cycles. Some nodes are shared (in this example these are the
variable 𝑥 and the constructor T). Sharing is very important since it is one of
the things that enable compactness of the representation.

Some of the edges are labeled with renamings. Actually, all edges are labeled
with renamings, but identity renamings are not drawn. These renamings are
very important – without them we would need a separate node for each variable,
and we couldn’t merge nodes representing the same function modulo renaming,
which would increase space consumption (such functions often appear during
transformation). Merging up to renaming will be discussed in Section 2.2.

Inductive Prover Based on Equality Saturation 29

not 𝑏

case of (T, F)

F𝑥 T

even 𝑛

case of (Z, S 𝑚)

odd 𝑛

case of (Z, S 𝑚)

odd 𝑛

subst(𝑏)

even 𝑛

subst(𝑏)

{𝑥
↦→ 𝑛}

{
𝑥
↦→

𝑛} {𝑥
↦→

𝑏}

{𝑛 ↦→ 𝑚}

{𝑛 ↦→ 𝑚}

Fig. 2: E-graph representing functions even and odd

Note also that we use two methods of representing function calls. If all
the arguments are distinct variables, then we can simply use a renaming (the
function odd is called this way). If the arguments are more complex, then we use
explicit substitution [2], which is very similar to function call but has more fine-
grained reduction rules. We can use explicit substitutions even if the arguments
are distinct variables, but it’s more expensive than using renamings (and actually
we have an axiom to transform such explicit substitutions to renamings). Note
that we require an explicit substitution to bind all variables of the expression
being substituted.

The same way graphs naturally correspond to programs, E-graphs naturally
correspond to programs with multiple function definitions. Consider the follow-
ing “nondeterministic” program:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

odd n = not (even n)
even n = not (odd n)

This program contains multiple definitions of the functions even and odd, but all
the definitions are actually equivalent. This program can also be represented as
a graph, but there will be multiple nodes corresponding to functions even and
odd. If we add the information that nodes corresponding to the same function
are in the same equivalence class, we get an E-graph. The E-graph corresponding
to the above program is shown in Figure 2. Nodes of equivalent functions are
connected with dashed lines, meaning that these nodes are in the same class of

30 Sergei A. Grechanik

equivalence. As can be seen, the drawing is messy and it’s hard to understand
what’s going on there, so we’ll mostly use textual form to describe E-graphs.

E-graphs are also useful for representing compactly sets of equivalent pro-
grams. Indeed, we can extract individual programs from an E-graph or a non-
deterministic program by choosing a single node for each equivalence class, or
in other words, a single definition for each function. However, we cannot pick
the definitions arbitrarily. For example, the following program isn’t equivalent
to the one above:

not b = case b of { T → F; F → T }

odd n = not (even n)
even n = not (odd n)

This problem should be taken into account not only when performing program
extraction, but also during certain complex transformations like merging by
bisimilarity which we will discuss in Section 4.

2.1 Node labels

In this section we’ll discuss how node labels correspond to language constructs.
First of all, each node of an E-graph is a member of some equivalence class.

We will use symbols 𝑓, 𝑔, ℎ, . . . to denote nodes as well as corresponding func-
tions. Each node has a label 𝐿(𝑓) and a set of input variables 𝑉 (𝑓) (in the
implementation variables are numbered, but in this paper we treat them as
named). 𝑉 (𝑓) may decrease with graph evolution, and it should be kept up to
date because we need 𝑉 (𝑓) to perform some transformations (keeping it up to
date is beyond the scope of this paper). Each edge of an E-graph is labeled with
an injective renaming, its domain being the set of input variables of the edge’s
destination node. We will use the notation 𝑓 = 𝐿 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛 to describe
a node 𝑓 with a label 𝐿 and outgoing edges with renamings 𝜃𝑖 and destinations
𝑔𝑖. We will write 𝑓 ∼= 𝑔 to denote that 𝑓 and 𝑔 are from the same equivalence
class.

There are only four kinds of node labels. We give a brief description for each
of them and some code examples:

– 𝑓 = 𝑥. (Variable / identity function). We use the convention that the
identity function always takes the variable 𝑥, and if we need some other
variable, we adjust it with a renaming. Code example: f x = x

– 𝑓 = subst(𝑥1, . . . , 𝑥𝑛)→ 𝜉ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Explicit substitution / function
call / let expression). An explicit substitution substitutes values 𝜃𝑖𝑔𝑖 for the
variables 𝑥𝑖 in 𝜉ℎ. We require it to bind all the variables of 𝜉ℎ. Explicit
substitution nodes usually correspond to function calls:

f x y = h (g1 x) (g2 y) (g3 x y)

They may also correspond to non-recursive let expressions, or lambda ab-
stractions immediately applied to the required number of arguments:

Inductive Prover Based on Equality Saturation 31

f x y = let { u = g1 x; v = g2 y; w = g3 x y } in h u v w
= (𝜆 u v w . h u v w) (g1 x) (g2 y) (g3 x y)

But to describe E-graph transformations we will use the following non-
standard (but hopefully more readable) postfix notation:

f x y = h u v w { u = g1 x, v = g2 y, w = g3 x y }
– 𝑓 = 𝐶 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Constructor). Code example:

f x y = C (g1 x) (g2 y) (g3 x y)

– 𝑓 = caseof(𝐶1𝑥1, . . . , 𝐶𝑛𝑥𝑛)→ 𝜉ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛. (Pattern matching). This
label is parametrized with a list of patterns, each pattern is a constructor
name and a list of variables. The corresponding case bodies (𝜃𝑖𝑔𝑖) don’t have
to use all the variables from the pattern. 𝜉ℎ represents the expression being
scrutinized. Code example:

f x y = case h x of
S n → g1 y n
Z → g2 x

We will also need an operation of adjusting a node with a renaming. Consider
a node 𝑓 = 𝐿→ 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛 and a renaming 𝜉. Suppose, we want to create a
function 𝑓 ′ = 𝜉𝑓 (𝑓 ′ is 𝑓 with parameters renamed). We can do this by adjusting
outgoing edges of 𝑓 with 𝜉 (unless 𝑓 = 𝑥 in which case it doesn’t have outgoing
edges). We will use the following notation for this operation:

𝑓 ′ = 𝜉(𝐿→ 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛)

The operation is defined as follows:

𝜉(𝐶 → 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) = 𝐶 → (𝜉 ∘ 𝜃1)𝑔1, . . . , (𝜉 ∘ 𝜃𝑛)𝑔𝑛

𝜉(subst(. . .)→ 𝜁ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) =

subst(. . .)→ 𝜁ℎ, (𝜉 ∘ 𝜃1)𝑔1, . . . , (𝜉 ∘ 𝜃𝑛)𝑔𝑛

𝜉(caseof(. . .)→ 𝜁ℎ, 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛) =

caseof(. . .)→ (𝜉 ∘ 𝜁)ℎ, (𝜉′1 ∘ 𝜃1)𝑔1, . . . , (𝜉
′
𝑛 ∘ 𝜃𝑛)𝑔𝑛

In the last case each 𝜉′𝑖 maps the variables bound by the 𝑖th pattern to themselves
and works as 𝜉 on all the other variables.

2.2 Merging

One of the basic operations of the E-graph is merging of equivalence classes.
Usually it is done after applying axioms that result in adding new equalities
between nodes. In the case of simple equalities like 𝑓 = 𝑔 we should simply merge
the corresponding equivalence classes. But we also want to merge functions
which are equal only up to some renaming, so should take into account equalities

32 Sergei A. Grechanik

of the form 𝑓 = 𝜃𝑔 where 𝜃 is some non-identity renaming. In this case we should
first adjust renamings on edges so that the equation becomes of the form 𝑓 = 𝑔
and then proceed as usual.

Consider the equation 𝑓 = 𝜃𝑔. Let’s assume that 𝑔 is not a variable node
(𝑥) and it’s not in the same equivalence class with a variable node (otherwise we
can rewrite the equation as 𝑔 = 𝜃−1𝑓 , and if they both were equal to a variable
node, then our E-graph would be self-contradictory). Now for each node ℎ in
the same equivalence class with 𝑔 (including 𝑔) we should perform the following:

1. Adjust the outgoing edges of ℎ with 𝜃 using previously described node ad-
justment operation.

2. For each edge incoming into ℎ replace its renaming, say, 𝜉, with a renaming
𝜉 ∘ 𝜃−1

After the adjustment the equation becomes 𝑓 = 𝑔 and we can merge the equiv-
alence classes.

Note that this procedure works if 𝑓 and 𝑔 aren’t in the same equivalence
classes. If they are, then the equation looks like 𝑓 = 𝜃𝑓 and should be modelled
with an explicit substitution.

3 Axioms

3.1 Congruence

The most common cause of equivalence class merging is equivalence by congru-
ence, that is if we know that 𝑎 = 𝑓(𝑏), 𝑐 = 𝑓(𝑑) and 𝑏 = 𝑑, then we can infer
that 𝑎 = 𝑐. Note that usually this kind of merging is not explicitly formulated as
an axiom, but we prefer to do it explicitly for uniformity. Also, in our case the
axiom should take into account that we want to detect equivalences up to some
renaming. Here is the axiom written as an inference rule, we will later refer to
it as (cong):

𝑓 = 𝐿→ 𝜃1ℎ1, . . . , 𝜃𝑛ℎ𝑛 ∃𝜉 : 𝑔 = 𝜉(𝐿→ 𝜃1𝑘1, . . . , 𝜃𝑛𝑘𝑛) ∀𝑖 ℎ𝑖 ∼= 𝑘𝑖
𝑔 = 𝜉𝑓

It says that if we have a node 𝑓 and a node 𝑔 that is equivalent to 𝑓 adjusted
with some renaming 𝜉, then we can add the equality 𝑔 = 𝜉𝑓 to the E-graph. This
axiom is advantageous to apply as early as possible since it results in merging of
equivalence classes, which reduces duplication and gives more opportunities for
applying axioms. Also note that to make the search for the appropriate 𝜉 faster,
it is beneficial to represent nodes in normal form:

𝑓 = 𝜁(𝐿→ 𝜃1𝑔1, . . . , 𝜃𝑛𝑔𝑛)

Where 𝜃𝑖 are as close to identity renamings as possible, so to find 𝜉 we should
just compare the 𝜁’s.

Inductive Prover Based on Equality Saturation 33

3.2 Injectivity

This axiom may be seen as something like “inverse congruence”. If we know
that 𝑎 = 𝑓(𝑏), 𝑐 = 𝑓(𝑑) and 𝑎 = 𝑐 and 𝑓 is injective, then 𝑏 = 𝑑. Of course, we
could achieve the same effect by adding the equalities 𝑏 = 𝑓−1(𝑎) and 𝑑 = 𝑓−1(𝑐)
to the E-graph and then using congruence, but we prefer a separate axiom for
performance reasons. We will call it (inj):

𝑓 = 𝐿→ 𝜉(𝜃1ℎ1, . . . 𝜃𝑛ℎ𝑛) 𝑔 = 𝐿→ 𝜉(𝜁1𝑘1, . . . 𝜁𝑛𝑘𝑛) 𝑓 ∼= 𝑔 𝐿 is inj

∀𝑖 . ℎ𝑖 = 𝜃−1
𝑖 𝜁𝑖𝑘𝑖

“𝐿 is inj” means that 𝐿 is either a constructor, or a case-of that scrutinizes a
variable (i.e. 𝜃1 = 𝜁1 and ℎ1 = 𝑘1 = 𝑥) such that none of the 𝜃2ℎ2, . . . , 𝜃𝑛ℎ𝑛,
𝜁2𝑘2, . . . , 𝜁𝑛𝑘𝑛 uses this variable (in other words, positive information is propa-
gated). This axiom is also advantageous to apply as early as possible.

3.3 Semantics of explicit substitutions

In this and the next sections we will write axioms in a less strict but more
human-readable form. A rewriting rule 𝐸1 ↦→ 𝐸2 means that if we have a node
𝑓1 representing the expression 𝐸1, then we can add an equality 𝑓1 = 𝑓2 to the
E-graph where 𝑓2 is the node representing 𝐸2 (which should also be added to
the E-graph unless it’s already there). We use the compact postfix notation
to express explicit substitutions. We use letters 𝑒, 𝑓, 𝑔, ℎ, . . . to represent nodes
whose structure doesn’t matter. We sometimes write them applied to variables
they use (𝑓 𝑥 𝑦), but if variables don’t really matter, we omit them. Note that
the presented rules can be generalized to the case when pattern matchings have
arbitrary number of branches and functions take arbitrary number of arguments,
we just use minimal illustrative examples for the sake of readability.

In Figure 3 four axioms of explicit substitutions [2] are shown. All of them
basically describe how to evaluate a node if it is an explicit substitution (using
call-by-name strategy). The answer is to push the substitution down (the last
three rules) until we reach a variable where we can just perform the actual
substitution (the first rule, (subst-id)). The appropriate rule depends on the
node we choose as the leftmost child of our substitution node – there are four
kinds of nodes, so there are four rules.

(subst-id) 𝑥 {𝑥 = 𝑔} ↦→ 𝑔

(subst-subst) 𝑓 𝑥 {𝑥 = 𝑔 𝑦} {𝑦 = ℎ} ↦→ 𝑓 𝑥 {𝑥 = 𝑔 𝑦 {𝑦 = ℎ}}
(subst-constr) 𝐶 (𝑓 𝑥) (𝑔 𝑥) {𝑥 = ℎ} ↦→ 𝐶 (𝑓 𝑥 {𝑥 = ℎ}) (𝑔 𝑥 {𝑥 = ℎ})
(subst-case-of) (case 𝑓 𝑥 of 𝐶 𝑦 → 𝑔 𝑥 𝑦) {𝑥 = ℎ} ↦→

case 𝑓 𝑥 {𝑥 = ℎ} of 𝐶 𝑦 → 𝑔 𝑥 𝑦 {𝑥 = ℎ, 𝑦 = 𝑦}

Fig. 3: Axioms of explicit substitutions

34 Sergei A. Grechanik

(case-of-constr) (case 𝐶 𝑒 of 𝐶 𝑦 → 𝑓 𝑥 𝑦) ↦→
𝑓 𝑥 𝑦 {𝑥 = 𝑥, 𝑦 = 𝑒}

(case-of-case-of) (case (case 𝑒 of 𝐶1 𝑦 → 𝑔) of 𝐶2 𝑧 → ℎ) ↦→
case 𝑒 of 𝐶1 𝑦 → (case 𝑔 of 𝐶2 𝑧 → ℎ)

(case-of-id) (case 𝑥 of 𝐶 𝑦 𝑧 → 𝑓 𝑥 𝑦 𝑧) ↦→
case 𝑥 of 𝐶 𝑦 𝑧 → 𝑓 𝑥 𝑦 𝑧 {𝑥 = (𝐶 𝑦 𝑧), 𝑦 = 𝑦, 𝑧 = 𝑧}

(case-of-transpose) case ℎ of {
𝐶1 𝑥 → case 𝑧 of 𝐷 𝑣 → 𝑓 𝑣 𝑥;
𝐶2 𝑦 → case 𝑧 of 𝐷 𝑣 → 𝑔 𝑣 𝑦;

} ↦→
case 𝑧 of 𝐷 𝑣 →

case ℎ of {
𝐶1 𝑥 → 𝑓 𝑣 𝑥;
𝐶2 𝑦 → 𝑔 𝑣 𝑦;

}

Fig. 4: Axioms of pattern matching

Usually substitution in the body of a function is performed as an indivisible
operation, but this kind of transformation would be too global for an E-graph,
so we use explicit substitutions to break it down.

There are two more rather technical but nonetheless important axioms con-
cerning substitution. The first one is elimination of unused variable bindings:

(subst-unused) 𝑓 𝑥 𝑦 {𝑥 = 𝑔, 𝑦 = ℎ, 𝑧 = 𝑘} ↦→ 𝑓 𝑥 𝑦 {𝑥 = 𝑔, 𝑦 = ℎ}
When this axiom is applied destructively (i.e. the original node is removed), it
considerably simplifies the E-graph. This axiom is the reason why we need the
information about used variables in every node.

The second axiom is conversion from a substitution that substitutes variables
for variables to a renaming:

(subst-to-renaming) 𝑓 𝑥 𝑦 {𝑥 = 𝑦, 𝑦 = 𝑧} ↦→ 𝑓 𝑦 𝑧

This axiom requires the original substitution to be injective. Note also that
application of this axiom results in merging of the equivalence classes corre-
sponding to the node representing the substitution and the node 𝑓 , so if they
are already in the same class, this axiom is inapplicable. We also apply this
axiom destructively.

3.4 Semantics of pattern matching

The axioms concerning pattern matching are shown in Figure 4. The first of
them, (case-of-constr), is essentially a reduction rule: if the scrutinee is an ex-
pression starting with a constructor, then we just substitute appropriate subex-
pressions into the corresponding case branch.

Inductive Prover Based on Equality Saturation 35

The next two axioms came from supercompilation [21,24]. They tell us what
to do when we get stuck during computation because of missing information (i.e.
a variable). The axiom (case-of-case-of) says that if we have a pattern matching
that scrutinizes the result of another pattern matching, then we can pull the
inner pattern matching out. The axiom (case-of-id) is responsible for positive
information propagation: if a case branch uses the variable being scrutinized,
then it can be replaced with its reconstruction in terms of the pattern variables.

The last axiom, (case-of-transpose), says that we can swap two consecutive
pattern matchings. This transformation is not performed by supercompilers and
is actually rarely useful in a non-total language.

3.5 Totality

If we assume that our language is total, then we can use all the axioms mentioned
above and also some more axioms that don’t hold in the presence of bottoms.
Although proving equivalence of total functions is not our main goal, our im-
plementation has a totality mode which enables three additional axioms from
Figure 5.

(case-of-constr-total) case ℎ of {
𝐶1 𝑥 → 𝐷 (𝑓 𝑥);
𝐶2 𝑦 → 𝐷 (𝑓 𝑦);

} ↦→
𝐷 (case ℎ of {

𝐶1 𝑥 → 𝑓 𝑥;
𝐶2 𝑦 → 𝑓 𝑦;

})
(case-of-transpose-total) case ℎ of {

𝐶1 𝑥 → case 𝑧 of 𝐷 𝑣 → 𝑓 𝑣 𝑥 𝑧;
𝐶2 𝑦 → 𝑔 𝑦;

} ↦→
case 𝑧 of 𝐷 𝑣 →

case ℎ of {
𝐶1 𝑥 → 𝑓 𝑣 𝑥 𝑧;
𝐶2 𝑦 → 𝑔 𝑦;

}
(useless-case-of-total) case ℎ of {

𝐶1 𝑥 → 𝑓 ;
𝐶2 𝑦 → 𝑓 ;

} ↦→
𝑓

Fig. 5: Additional axioms of pattern matching in total setting

36 Sergei A. Grechanik

The axiom (case-of-constr-total) lifts equal constructors from case branches.
If 𝐸 could be bottom, then it wouldn’t be correct to do that (actually the axiom
makes the function lazier). Note that constructors may have arbitrary arity.

The axiom (case-of-transpose-total) is a variation of the axiom (case-of-
transpose). It may swap the pattern matchings even if inner pattern matching
is not performed in some branches of the outer one.

The axiom (useless-case-of-total) removes an unnecessary pattern matching
when all of its branches are equal (they can’t use pattern variables (𝑥 and 𝑦 in
this case) though).

3.6 On correctness and completeness

Correctness of the mentioned axioms can be easily proved if we fix an appropriate
semantics for the language.

Since the problem of function equivalence is undecidable, no finite set of
axioms can be complete, but we can compare our set of axioms with other
transformers. If we take all the axioms from Figure 3 and the axiom (case-
of-constr) from Figure 4, we will be able to perform interpretation. If we also
add axioms (case-of-case-of) and (case-of-id) from Figure 4, then we will be
able to perform driving (interpretation with incomplete information, i.e. with
free variables). Given infinite time, driving allows us to build a perfect tree for a
function (which is something like an infinite tabular representation of a function).
Perfect trees consist of constructors, variables and pattern matchings on variables
with positive information fully propagated. Perfect trees aren’t unique, some
functions may have multiple perfect trees, and the (case-of-transpose) axiom
is used to mitigate this problem (although not eliminate it completely). The
totality axioms (Figure 5) equate even more perfect trees by rearranging their
nodes.

Of course, we could add more axioms. For example, in the total case we
could use an axiom to lift pattern matchings through explicit substitutions, not
only other pattern matchings. Or we could add generalizations which are used
in supercompilers. All of this would make our equality saturator more powerful
but at the cost of lower performance. So this is all about balance. As for
the generalization, in the case of equality saturation expressions are already in
generalized state, and we can transform any subexpression of any expression.
It’s not a complete solution to the problem of generalization since it’s only equal
to peeling the outer function call from an expression, but it still allows us to
solve many examples that can’t be solved with driving alone.

Another issue is proof by induction or coinduction. In supercompilers coin-
duction is implicitly applied when we build a residual program. Higher level
supercompilers and inductive provers are able to apply (co)induction several
times, thus proving the lemmas needed to prove the target proposition. In
our equality saturator (co)induction is implemented as a special transformation
called merging by bisimilarity which is discussed in Section 4.

Inductive Prover Based on Equality Saturation 37

3.7 Axioms applied destructively

We apply some transformations destructively, i.e. remove the original nodes and
edges that triggered the transformation. It is a deviation from pure equality
saturation approach, but it is a necessary one. Currently the transformations
we apply destructively are (subst-id), (subst-unused), (subst-to-renaming), and
(case-of-constr). We have tried to switch on and off their destructivity. Turned
out that non-destructive (case-of-constr) leads to a lot of failures on our test suite
(due to timeouts), but helps to pass one of the tests that cannot be passed when
it’s destructive (which is expected: non-destructive transformations are strictly
more powerful when there is no time limit). Non-destructive (subst-unused) has
a similar effect: it helps to pass two different tests, but at the price of failing sev-
eral other tests. At last, non-destructivity of (subst-id) and (subst-to-renaming)
doesn’t impede the ability of our tool to pass tests from our test suite but when
either of them is applied non-destructively, our tool becomes about 15% slower.
We also tried to make all the mentioned transformations non-destructive, which
rendered our tool completely unusable because of combinatorial explosion of the
E-graph, which substantiates the importance of at least some destructivity.

4 Merging by bisimilarity

The axiom of congruence can merge two functions into one equivalence class if
they have the same tree representation. But if their definitions involve separate
(but equal) cycles, then the congruence axiom becomes useless. Consider the
following two functions:

f = S f
g = S g

If they aren’t in the same equivalence class in the first place, none of the already
mentioned axioms can help us equate them. Here we need some transformation
that is aware of recursion. Note that in the original implementation of equality
saturation called Peggy [23] there is such a transformation that merges 𝜃-nodes,
but it doesn’t seem to be published anywhere and it is much less powerful than
the one described here.

The general idea of this kind of transformation is to find two bisimilar sub-
graphs growing from the two given nodes from different equivalence classes and
merge these equivalence classes if the subgraphs have been found. Note though
that not every subgraph is suitable. Consider the following nondeterministic
program:

f x = C; g x = D
f x = f (f x); g x = g (g x)

The functions 𝑓 and 𝑔 are different but they both are idempotent, which is stated
by the additional definitions, so we have two equal closed subgraphs “defining”
the functions:

38 Sergei A. Grechanik

f x = f (f x)
g x = g (g x)

Of course, we cannot use subgraphs like these to decide whether two functions
are equal, because they don’t really define the functions, they just state that
they have the property of idempotence. So we need a condition that guarantees
that there is (semantically) only one function satisfying the subgraph.

In our implementation we employ the algorithm used in Agda and Foetus to
check if a recursive function definition is structural or guarded [4]. These condi-
tions are usually used in total languages to ensure termination and productivity,
but we believe that they can be used to guarantee uniqueness of the function
satisfying a definition in a non-total language with infinite and partial values,
although a proof of this claim is left for future work. Informally speaking, in this
case guarded recursion guarantees that there is data output between two con-
secutive recursive function calls, and structural recursion guarantees that there
is data input between them (i.e. a pattern matching on a variable that hasn’t
been scrutinized before). It’s not enough for function totality since the input
data may be infinite, but it defines the behaviour of the function on each input,
thus guaranteeing it to be unique.

Note that there is a subtle difference between subgraphs that may have mul-
tiple fixed points and subgraphs that have a single fixed point equal to bottom.
Consider the following function “definition”:

f x = f x

The least fixed point interpretation of this function is bottom. But there are
other fixed points (actually, any one-argument function is a fixed point of this
definition). Now consider the following function:

f x = eat infinity
infinity = S infinity
eat x = case x of { S y → eat y }

The definition of infinity is guardedly recursive, and the definition of eat is struc-
turally recursive. The least fixed point interpretation of the function f is still
bottom but now it is guaranteed to be the only interpretation.

Of course, this method of ensuring uniqueness may reject some subgraphs
having a single fixed point, because the problem is undecidable in general. Note
also that this is not the only possible method of ensuring uniqueness. For ex-
ample, we could use ticks [19] as in two-level supercompilation [15]. Ticks are
similar to constructors but have slightly different properties, in particular they
cannot be detected by pattern matching. Tick transformations could be encoded
as axioms for equality saturation.

4.1 Algorithm description

In this subsection we’ll describe the algorithm that we use to figure out if two
nodes have two bisimilar subgraphs growing from them and meeting the unique-
ness condition. First of all, the problem of finding two bisimilar subgraphs is a

Inductive Prover Based on Equality Saturation 39

function merge-by-bisimilarity(𝑚, 𝑛)
if bisimilar?(𝑚, 𝑛, ∅) then merge(𝑚, 𝑛)

function bisimilar?(𝑚, 𝑛, history)
if 𝑚 ∼= 𝑛 then return true
else if ∃(𝑚′, 𝑛′) ∈ history : 𝑚′ ∼= 𝑚 ∧ 𝑛′ ∼= 𝑛 then

if the uniqueness condition is met then
return true

else
return false

else if 𝑚 and 𝑛 are incompatible then return false
else

for (𝑚′, 𝑛′) : 𝑚′ ∼= 𝑚 ∧ 𝑛′ ∼= 𝑛 ∧ label(𝑚′) = label(𝑛′) do
children pairs = zip(children(𝑚′), children(𝑛′))
if length(children(𝑚′)) = length(children(𝑛′))

and ∀ (𝑚′′, 𝑛′′) ∈ children pairs
bisimilar?(𝑚′′, 𝑛′′, {(𝑚′, 𝑛′)} ∪ history) then

return true
return false

Fig. 6: Merging by bisimilarity

variation of the subgraph bisimulation problem which is NP-complete [8]. In cer-
tain places we trade completeness for performance (so sometimes our algorithm
fails to find the subgraphs when they exist), but merging by bisimilarity is still
one of the biggest performance issues in our experimental implementation. The
merging by bisimilarity algorithm that we use is outlined in Figure 6. It checks
(using the function bisimilar?) if there are two bisimilar subgraphs meeting
the uniqueness condition, and if there are, merges the equivalence classes of the
nodes. Checking for bisimilarity essentially consists in simultaneous depth-first
traversal of the E-graph from the given nodes. This process resembles super-
compilation.

The function bisimilar? works as follows. If the two nodes are equal, then
they are bisimilar and we return true. If we encounter a previously visited
pair of nodes (up to ∼=), we check if the uniqueness condition holds, and if
it does, we return true (this case corresponds to folding in supercompilation),
and otherwise we stop trying and return false (this case doesn’t guarantee that
there’s no bisimulation, but we do it for efficiency). This case also ensures
termination of the algorithm since the number of nodes in the E-graph is finite,
and they are bound to repeat at some point. Note that some kinds of uniqueness
conditions have to be checked after the whole bisimulation is known (and the
guardedness and structurality checker is of this kind since it needs to know all the
recursive call sites). In this case it is still advantageous to check some prerequisite
condition while folding, which may be not enough to guarantee correctness, but
enough to filter out obviously incorrect graphs.

40 Sergei A. Grechanik

If neither of the two previous cases is applicable, we check if the two nodes
are at least compatible (again, for efficiency reasons, we could do without it in
theory). That means that there are no nodes equal to them that have incompat-
ible labels, like different constructors or a constructor and a pattern matching
on a variable. If the nodes are compatible, we go on and check all pairs of nodes
equivalent to the original ones. If there is a pair of nodes such that their children
are bisimilar, then the original pair is bisimilar.

We can extract the actual bisimulation by collecting all the node pairs on
which we return true (we will call this relation 𝑅). We can also extract the
two bisimilar subgraphs (actually, E-subgraphs) by taking the corresponding
elements of these pairs (either left or right) and outgoing edges for those nodes
that occurred bisimilar to some other nodes because their children were bisimilar.
Indeed, the roots of these two subgraphs are in 𝑅 (up to ∼=) since the function
bisimilar? returned true, and each pair of nodes from 𝑅 is either a pair of
equivalent nodes (in which case their outgoing edges are not included in the
subgraph) or a pair of nodes with equal labels such that their pairs of children
are in 𝑅 (up to ∼=). This substantiates the name of this transformation. And
again we emphasize that the existence of two bisimilar subgraphs proves that
the nodes are equivalent only if they meet the uniqueness condition.

Note that in our description of the algorithm we ignored the question of
renamings. We did it for the sake of brevity, and actually (since we want to
merge nodes even if they are equal only up to some renaming) we should take
them into account which complicates the real implementation a little bit.

5 On order of transformation

Our experimental implementation of an equivalence prover for a first-order lazy
language based on equality saturation is written in Scala and can be found on
GitHub [1].

In our implementation we deviate from pure equality saturation for practical
reasons. Pure equality saturation approach requires all transformations to be
monotone with respect to the ordering ⊑ on E-graphs where 𝑔1 ⊑ 𝑔2 means
that the set of equalities encoded by 𝑔1 is a subset of the corresponding set for
𝑔2. Moreover, it requires them to be applied non-destructively, i.e. 𝑔 ⊑ 𝑡(𝑔) for
each transformation 𝑡 (in other words, we cannot remove nodes and edges, and
split equivalence classes). But in return we are granted with a nice property: if
we reach the fully saturated state (no transformation can change the E-graph
further), then the resulting E-graph will be the same no matter in what order
we have applied the transformations.

Unfortunately, in reality this is not very practical. First of all, saturation can
never be reached if our axioms are complex enough (or at least it will take too
long). In particular, the axioms we described above can be applied indefinitely
in most cases. To solve this problem we should limit the axiom application. We
can do this either by sacrificing randomness of the order of axiom application
and simply limiting the total number of applications, or by using some limiting

Inductive Prover Based on Equality Saturation 41

monotone preconditions (similar to whistles in supercompilers), e.g. limiting the
depth of the nodes to which axioms may be applied.

Second, if we always apply axioms non-destructively, we may find ourselves
with an E-graph littered with useless garbage. But applying axioms destructively
makes the randomness of axiom applications questionable, to say the least. Of
course, the system may preserve the nice property of ordering independence, but
it may be much harder to prove.

All in all, more or less deterministic order of transformation seems very
desirable in practice. In our implementation we use the following order:

1. Transform the programs into an E-graph.
2. Apply all possible non-destructive transformations except merging by bisimi-

larity, congruence and injectivity to the equations that are already in E-graph
but not to the equations that are added by the transformations performed
in this step. This can be done by postponing the effects of transformations:
first, we collect the effects of applicable transformations (nodes and edges to
add, and classes to merge), then we apply all these effects at once.

3. Perform E-graph simplification: apply congruence, injectivity and destruc-
tive transformations to the E-graph until the saturation w.r.t. these trans-
formations is reached. It is quite safe since all these transformations are
normalizing in nature (i.e. they simplify the E-graph).

4. Perform merging by bisimilarity over each pair of equivalence classes. Pairs
of equivalence classes are sorted according to resemblance of their compo-
nents, and then the merging by bisimilarity algorithm is applied to them
sequentially. After each successful merge perform E-graph simplification ex-
actly as in the previous step.

5. Repeat steps 2–5 until the goal is reached.

This way E-graph is being built in a breadth-first manner, generation by gener-
ation, each generation of nodes and edges results from applying transformations
to the nodes and edges of the previous generations. An exception from this
general rule is a set of small auxiliary (but very important) transformations con-
sisting of congruence, injectivity and all the destructive transformations which
are applied until the saturation because they always simplify the E-graph.

6 Example

In this section we’ll discuss a simple example to illustrate how the transforma-
tions described earlier work in practice. Consider the following program:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }
oddSlow n = not (evenSlow n)

42 Sergei A. Grechanik

It defines functions that check if a natural number is odd or even. The func-
tions even and odd are defined efficiently using tail recursion, but the functions
evenSlow and oddSlow will need linear amount of memory during the execution.
Still, they are semantically equivalent, so we want to prove that even = evenSlow.

We will follow the scheme from the previous section. The program above cor-
respond to the initial state of the E-graph and constitutes the zeroth generation.
Now we should apply all applicable transformations to it. The only application
that produces something new after simplification is of the transformation (subst-
case-of) to the nodes oddSlow n = not (evenSlow n) and not b = case b of {...}.
Indeed, it produces

oddSlow n = case (n { n = evenSlow n }) of { T → F; F → T }
which is immediately simplified by destructive application of (subst-id) to

oddSlow n = case (evenSlow n) of { T → F; F → T }
Actually this sequence of transformation is just expansion of the function not.
This new definition of oddSlow appears in the E-graph alongside with the old
definition of oddSlow. The current state of the E-graph is the first generation.

Now it is possible to apply the transformation (case-of-case-of) to the nodes
oddSlow n = case (evenSlow n) of {...} and evenSlow n = case n of {...} which
after simplification with (case-of-constr) gives the following definition:

oddSlow n = case n of { Z → F; S m → evenSlow2 m }
evenSlow2 m = case (oddSlow m) of { T → F; F → T }

Here evenSlow2 is an auxiliary function which is actually equal to evenSlow,
but we don’t know that yet. The current state of the E-graph is the second
generation.

Now we apply (case-of-case-of) to these last two definitions which give us the
following:

evenSlow2 n = case n of { Z → T; S m → oddSlow2 m }
oddSlow2 m = case (evenSlow2 m) of { T → F; F → T }

Again, we had to introduce a new function oddSlow2 which will turn out to be
equal to oddSlow.

We should also apply (case-of-case-of) to the same definition of evenSlow2 and
a different definition of oddSlow, namely oddSlow n = case (evenSlow n) of {...},
which gives us

evenSlow2 m = case (evenSlow m) of { T → T; F → F }
Although from this definition it is quite obvious that evenSlow2 = evenSlow, it
is of no use to us: since our internal representation is untyped, evenSlow may
return something different from T and F, and the fact that it can’t should be
proved by induction. Instead, other definitions will be used to show by induction
that this equivalence holds.

First of all, let’s see what the E-graph currently looks like:

Inductive Prover Based on Equality Saturation 43

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }

oddSlow n = not (evenSlow n)
oddSlow n = case (evenSlow n) of { T → F; F → T }
oddSlow n = case n of { Z → F; S m → evenSlow2 m }

evenSlow2 n = case n of { Z → T; S m → oddSlow2 m }
evenSlow2 m = case (oddSlow m) of { T → F; F → T }
evenSlow2 m = case (evenSlow m) of { T → T; F → F }

oddSlow2 m = case (evenSlow2 m) of { T → F; F → T }
Now we can extract two equal definitions for function pairs evenSlow, oddSlow,
and evenSlow2, oddSlow2, the corresponding nodes are highlighted. Here is the
definitions for the first pair:

evenSlow n = case n of { Z → T; S m → oddSlow m }
oddSlow n = case (evenSlow n) of { T → F; F → T }

The definitions for the second pair of functions is the same up to function names
and names of bound variables. As it can be seen, all the recursive calls here are
preformed on structurally smaller arguments, so there may be no more than one
fixed point of each subgraph, and since the subgraphs are bisimilar, we come
to a conclusion that evenSlow = evenSlow2 and oddSlow = oddSlow2. Let’s add
this information to the E-graph, thus performing merging by bisimilarity:

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
odd n = case n of { Z → F; S m → even m }

evenSlow n = case n of { Z → T; S m → oddSlow m }
evenSlow n = case (oddSlow n) of { T → F; F → T }
evenSlow n = case (evenSlow n) of { T → T; F → F }

oddSlow n = not (evenSlow n)
oddSlow n = case (evenSlow n) of { T → F; F → T }
oddSlow n = case n of { Z → F; S m → evenSlow m }

Now we can perform another merging by bisimilarity to equate the functions even
and evenSlow. The needed bisimilar subgraphs conists of the nodes highlighted
in the above program. The resulting E-graph is the third (and last, since we’ve
reached the goal) generation and looks like this:

44 Sergei A. Grechanik

not b = case b of { T → F; F → T }

even n = case n of { Z → T; S m → odd m }
even n = case (odd n) of { T → F; F → T }
even n = case (even n) of { T → T; F → F }

odd n = case n of { Z → F; S m → even m }
odd n = not (even n)
odd n = case (even n) of { T → F; F → T }

It is interesting to point out that although we proved the goal statement us-
ing two mergings by bisimilarity (i.e. we used a lemma), we could have managed
with only one if we had waited till the fourth generation without using induc-
tion. So sometimes lemmas aren’t really required but may lead to earlier proof
completion. Still, it doesn’t mean that the proof will be found faster, even more,
usually our tool takes slightly less time if we restrict application of merging by
bisimilarity to the nodes from the goal statement since it doesn’t have to check
all equivalence class pairs from the E-graph in this case – but this is achieved at
the cost of failures on tasks that really require lemmas.

7 Experimental evaluation

We’ve used a set of simple equations to evaluate our prover and compare it to
similar tools. We’ve split this set into four groups: a main group of relatively
simple equalities (Table 1) which don’t seem to need any special features, a
group of equalities that require nontrivial generalizations (Table 2), a group of
equalities that need strong induction (Table 3), and a group of equalities that
require coinduction (Table 4). The tests can be found in our repository [1] under
the directory samples. For some of the tests we gave human-readable equations
in the second column – note though that real equations are often a bit more
complex because we have to make sure that they hold in a non-total untyped
language.

The tables show average wall-clock time in seconds that the tools we’ve tested
spent on the tests. We used a time limit of 5 minutes, runs exceeding the time
limit counted as failures. We ran our benchmark on an Intel(R) Core(TM) i7 930
@ 2.80 GHz machine with Ubuntu 12.04. The tools we used in our benchmarking
were:

– graphsc. Graphsc is our experimental prover based on the methods de-
scribed in this paper. Note that although it internally works only with
first-order functions, and there are many equalities in our sets involving
higher-order functions, it can still prove them, because we perform defunc-
tionalization before conversion to E-graph.

– hosc. HOSC is a supercompiler designed for program analysis, including the
problem of function equivalence [12] (but it’s not perfectly specialized for
this task). It uses the following technique: first supercompile left hand side

Inductive Prover Based on Equality Saturation 45

and right hand side separately and then syntactically compare the residual
programs [14,17]. The column labeled hosc (hl) corresponds to the higher-
level version of HOSC [13, 15]. It can come up with lemmas necessary to
prove the main goal and prove them using a single-level HOSC.

– zeno. Zeno [20] is an inductive prover for Haskell. Internally it is quite
similar to supercompilers. Zeno assumes totality, so it is not fair to compare
tools that don’t (our tool and HOSC) to pure Zeno, so we used a trick
to encode programs operating on data with bottoms as total programs by
adding additional bottom constructor to each data type. The results of Zeno
on the adjusted samples are shown in the column zeno (p). The results of
pure Zeno (assuming totality) are shown for reference in the column zeno
(t).

– hipspec. HipSpec [5] is an inductive prover for Haskell which can generate
conjectures by testing (using QuickSpec [6]), prove them using an SMT-
solver, and then use them as lemmas to prove the goal and other conjectures.
Like Zeno, HipSpec assumes totality, so we use the same transformation
to model partiality. The results are shown in columns hipspec (p) and
hipspec (t). Note also that the results of HipSpec are sensitive to the
Arbitrary type class instances for data types. We generated these instances
automatically and ran HipSpec with --quick-check-size=10 to maximize
the number of tests passed given these instances. We also used the maximal
induction depth of 2 (-d2) to make HipSpec pass two tests requiring strong
induction.

Since the test set is not representative, it is useless to compare the tools by
the number of test they pass. Moreover, the tools seem to fall into different
niches. Still, some conclusions may be drawn from the results.

First of all, HipSpec is a very powerful tool, in total mode it proves most of
the equalities from the main set (Table 1) and all of the equalities that require
complex generalizations (Table 2). However, it is very slow on some tests. It is
also much less powerful on tests adjusted with bottoms. Indeed, partial equalities
are often a bit trickier to prove than their total counterparts. It is also possible
that this particular approach of reducing a partial problem to a total one and
then using a total prover is not very efficient.

Zeno and HOSC are very fast which seems to be due to their depth-first
nature. Zeno is also quite powerful and can successfully compete with the slower
HipSpec, especially in the partial case. HOSC fails many test from the main set
presumably due to the fact that it is not specialized enough for the task of proving
equivalences. For example, the equivalence idle-simple is much easier to prove
when transforming both sides simultaneously. Also HOSC can’t prove bool-eq

and sadd-comm because they need the transformation (case-of-transpose) which
supercompilers usually lack. Interestingly, higher-level HOSC does prove some
additional equalities, but not in the case of tests that really need lemmas (except
even-double-acc from Table 2), which are the last four tests in the main set
(they need lemmas in a sense that neither Graphsc, nor HipSpec can prove them
without lemmas).

46 Sergei A. Grechanik

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

add-assoc x + (y + z) = (x + y) + z 1.6 0.5 0.6 0.3 0.3 8.8 0.9
append-assoc x ++ (y ++ z) =

(x ++ y) ++ z
1.8 0.5 0.6 0.3 1.1 4.9 3.2

double-add double (x+y) =
double x + double y

2.2 0.6 0.6 0.3 0.3 21.5 2.0

even-double even (double x) = true 1.7 0.6 0.6 0.3 0.3 82.5 97.9
ho/concat-concat concat (concat xs) =

concat (map concat xs)
3.2 0.6 0.7 0.4 0.4 80.0 47.0

ho/filter-append filter p (xs ++ ys) =
filter p xs ++ filter p ys

3.0 0.6 0.8 0.3 0.3 9.6 4.8

ho/map-append map f (xs ++ ys) =
map f xs ++ map f ys

2.1 0.6 0.7 0.3 0.3 9.8 4.5

ho/map-comp map (f . g) xs =
(map f . map g) xs

3.4 0.6 0.6 0.3 0.3 4.7 4.7

ho/map-concat map f (concat x) =
concat (map (map f) x)

2.8 0.6 0.7 0.3 0.3 91.4 47.9

ho/map-filter filter p (map f xs) =
map f (filter (p . f) xs)

3.6 0.7 0.7 0.3 0.3 6.3 5.8

idnat-idemp idNat (idNat x) = idNat x 1.5 0.5 0.5 0.3 0.3 0.8 0.7
take-drop drop n (take n x) = [] 2.4 0.6 0.7 0.3 0.3 47.8 9.6
take-length take (length x) x = x 2.3 0.6 0.6 0.3 0.3 6.8 7.9
length-concat length (concat x) =

sum (map length x)
2.8 0.7 0.8 0.3 0.3 fail 8.5

append-take-drop take n x ++ drop n x = x 3.6 fail 1.1 0.5 0.3 113.0 11.9
deepseq-idemp deepseq x (deepseq x y) =

deepseq x y
1.8 fail 0.9 0.3 0.3 4.7 1.6

deepseq-s deepseq x (S y) =
deepseq x (S (deepseq x y))

2.1 fail 0.7 0.3 0.3 10.1 0.7

mul-assoc (x * y) * z = x * (y * z) 11.6 0.8 fail 0.3 0.4 176.2 30.4
mul-distrib (x*y) + (z*y) = (x + z)*y 3.9 0.7 fail 0.3 0.3 151.8 92.1
mul-double x * double y = double (x*y) 5.1 0.6 fail 0.3 0.3 165.6 142.1
ho/fold-append foldr f (foldr f a ys) xs =

foldr f a (xs ++ ys)
2.1 0.6 0.7 fail 0.3 176.8 4.6

ho/church-id unchurch (church x) = x 6.1 0.6 0.6 0.3 0.3 fail fail
ho/church-pred fail 0.7 0.8 fail fail fail fail
ho/church-add fail 0.7 0.7 0.3 0.3 fail fail
idle-simple idle x = idle (idle x) 1.4 fail fail 0.3 0.3 0.8 0.7
bool-eq 1.3 fail fail 0.3 0.3 1.1 0.8
sadd-comm 2.1 fail fail 0.3 0.3 3.3 16.7
ho/filter-idemp filter p (filter p xs) =

filter p xs
fail fail fail 0.3 0.3 1.3 0.9

even-slow-fast even x = evenSlow x 1.8 fail fail fail fail 2.6 1.1
or-even-odd even x || odd x = true 3.9 fail fail fail 0.3 128.9 1.0

dummy 1.6 fail fail 0.3 0.3 2.4 0.8
idle idle x = deepseq x 0 1.5 fail fail 0.3 0.3 1.8 0.7
quad-idle 1.9 fail fail 0.3 0.3 fail 0.7
exp-idle 3.4 fail fail 0.3 fail fail 1.7

Table 1: Comparison of different tools on the main test subset

Inductive Prover Based on Equality Saturation 47

Our tool, Graphsc, seems to be in the middle: it’s slower than HOSC and
Zeno (and it should be since it’s breadth-first in nature) but rarely needs more
than 10 seconds. It’s interesting to analyze the failures of our tool. It fails three
tests from the main set. The tests ho/church-pred and ho/church-add need
deeper driving, our tool can pass them in the experimental supercompilation
mode which change the order of transformation to resemble that of traditional
supercompilers. Unfortunately, this mode is quite slow and leads to many other
failures when enabled by default. The test ho/filter-idemp is interesting:
it needs more information to be propagated, namely that the expression p x
evaluates to True. Since this expression is not a variable, we don’t propagate
this information (and neither does HOSC, however there is an experimental
mode for HOSC that does this and helps pass this test).

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

even-dbl-acc-lemma even (doubleAcc x (S y)) =
odd (doubleAcc x y)

fail 0.7 0.6 0.3 0.3 38.8 37.4

nrev-idemp-nat fail fail fail 0.3 0.3 21.9 2.0
deepseq-add-comm fail fail fail fail 0.3 fail 2.1
even-double-acc even (doubleAcc x 0) = true fail fail 0.8 fail fail fail 38.4
nrev-list naiveReverse = reverse fail fail fail fail fail 185.5 19.7
nrev-nat fail fail fail fail fail fail 1.1

Table 2: Comparison of the tools on the tests that require nontrivial generaliza-
tion

Now let’s look at the tests requiring nontrivial generalizations (Table 2). Here
we call a generalization trivial if it’s just peeling of the outer function call, e.g.
f (g a) (h b c) trivially generalizes to f x y with x = g a and y = h b c. Our tool
supports only trivial generalizations, and they are enough for a large number of
examples. But in some cases more complex generalizations are needed, e.g. to
prove the equality even-dbl-acc-lemma one need to generalize the expression
odd (doubleAcc x (S (S y))) to odd (doubleAcc x z) with z = S (S y). It’s not
super sophisticated, but the expression left after taking out the S (S y) is a
composition of two functions, which makes this generalization nontrivial. Our
tool is useless on these examples. Supercompilers like HOSC usually use most
specific generalizations which helps in some cases. But the best tool to prove
equalities like these is HipSpec (and still it doesn’t work that well in the partial
case).

In Table 3 the tests are shown that require strong induction, i.e. induction
schemes that peel more than one constructor at a time. This is not a problem
for Graphsc and HOSC since they don’t explicitly instantiate induction schemes.
But Zeno and HipSpec do. In the case of HipSpec the maximum induction depth
can be increased, so we specified the depth of 2, which helped HipSpec to pass
two of these tests at the price of increased running times for other tests.

48 Sergei A. Grechanik

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

add-assoc-bot 2.1 0.6 0.6 fail fail fail fail
double-half double (half x) + mod2 x = x 4.6 fail 1.2 fail fail 81.7 6.6
length-intersperse length (intersperse x xs) =

length (intersperse y xs)
fail 0.6 0.7 fail fail 1.6 0.9

kmp-eq fail 1.2 1.7 fail fail fail fail

Table 3: Comparison of the tools on the tests that require strong induction

Our tool doesn’t pass the KMP-test because it requires deep driving (and
again, our experimental supercompilation mode helps pass it). In the case of
length-intersperse it has trouble with recognizing the goal as something
worth proving because both sides are equal up to renaming. Currently it is
not obvious how this (seemingly technical) problem can be solved.

Name Description gra-
phsc

hosc hosc
(hl)

zeno
(p)

zeno
(t)

hip-
spec
(p)

hip-
spec
(t)

inf fix S = fix S 1.2 0.4 0.5 fail fail fail fail
shuffled-let 1.5 0.5 0.5 fail fail fail fail
shifted-cycle cycle [A,B] = A : cycle [B,A] 3.6 fail fail fail fail fail fail
ho/map-iterate map f (iterate f a) =

iterate f (f a)
fail 0.6 0.6 fail fail fail fail

Table 4: Comparison of the tools on the tests that require coinduction

The last test subset to discuss is the subset of tests requiring coinduction
(Table 4). Coinduction is not currently supported by Zeno and HipSpec, al-
though there are no obstacles to implement it in the future. The equality
ho/map-iterate can’t be proved by our tool because besides coinduction it
needs a nontrivial generalization.

8 Related work

Our work is based on the method of equality saturation, originally proposed
by Tate et al [23], which in turn is inspired by E-graph-based theorem provers
like Simplify [7]. Their implementation, named Peggy, was designed to trans-
form programs in low-level imperative languages (Java bytecode and LLVM),
although internally Peggy uses a functional representation. In our work we
transform lazy functional programs, so we don’t have to deal with encoding im-
perative operations in functional representation, which makes everything much
easier. Another difference is that in our representation nodes correspond to
functions, not just first-order values, which allows more general recursion to be
used, moreover we merge equivalence classes corresponding to functions equal
up to parameter permutation, which considerably reduces the E-graph complex-
ity. We also articulate the merging by bisimilarity transformation which plays a

Inductive Prover Based on Equality Saturation 49

very important role, making our tool essentially an inductive prover. Note that
Peggy has a similar (but simpler) transformation that can merge 𝜃-nodes, but
it doesn’t seem to be published anywhere.

Initially our work arose from analyzing differences between overgraph su-
percompilation [9] and equality saturation, overgraph supercompilation being
a variety of multi-result supercompilation with a flavor of equality saturation.
The present paper is loosely based on the preprint [10] which used a different
terminology (hypergraph instead of E-graph, hence the name of our GitHub
repository). We also used to consider the method to be a kind of supercompila-
tion, but although it borrows a lot from supercompilation, it is much closer to
equality saturation.

Supercompilation [24] is a program transformation technique that consists
in building a process tree (perhaps implicitly) by applying driving and gener-
alization to its leaves, and then folding the tree, essentially producing a finite
program, equivalent to the original one. Although supercompilation is usually
considered a source-to-source program transformation, it can be used to prove
program equivalence by syntactically comparing the resulting programs, due to
the normalizing effect of supercompilation.

Traditional supercompilers always return a single program, but for some
tasks, like program analysis, it is beneficial to produce a set of programs for
further processing. This leads to the idea of multi-result supercompilation, which
was put forward by Klyuchnikov and Romanenko [16]. Since there are many
points of decision making during the process of supercompilation (mainly when
and how to generalize), a single-result supercompiler may be transformed into a
multi-result one quite easily by taking multiple paths in each such point. The
mentioned motivation behind multi-result supercompilation is essentially the
same as that behind equality saturation.

Another important enhancement of traditional supercompilation is higher-
level supercompilation. Higher-level supercompilation is a broad term denoting
systems that use supercompilation as a primitive operation, in particular su-
percompilers that can invent lemmas, prove them with another (lower-level)
supercompiler, and use them in the process of supercompilation. Examples of
higher-level supercompilation are distillation, proposed by Hamilton [11], and
two-level supercompilation, proposed by Klyuchnikov and Romanenko [13,15].

Zeno [20] is an inductive prover for Haskell which works quite similarly to
multi-result supercompilation. Indeed, Zeno performs case analysis and applies
induction (both correspond to driving in supercompilation) until it heuristically
decides to generalize or apply a lemma (in supercompilation this heuristic is
called a whistle). That is, both methods are depth-first in nature unlike the
equality saturation approach, which explores possible program transformations
in breadth-first manner.

HipSpec [5] is another inductive prover for Haskell. It uses theory exploration
to discover lemmas. For this purpose it invokes QuickSpec [6], which generates
all terms up to some depth, splits them into equivalence classes by random
testing, and then transforms these classes into a set of conjectures. After that

50 Sergei A. Grechanik

these conjectures are proved one by one and then used as lemmas to prove other
conjectures and the main goal. To prove conjectures HipSpec uses external SMT-
solvers. This bottom-up approach is contrasted to the top-down approach of
most inductive provers, including Zeno and supercompilers, which invent lemmas
when the main proof gets stuck. HipSpec discovers lemmas speculatively which
is good for finding useful generalizations but may take much more time.

As to our tool, we do something similar to the bottom-up approach, but
instead of using arbitrary terms, we use the terms represented by equivalence
classes of the E-graph (i.e. generated by transforming initial term) and then try
to prove them equal pairwise, discarding unfruitful pairs by comparing perfect
tree prefixes that have been built in the E-graph so far, instead of testing. Since
we use only terms from the E-graph, we can’t discover complex generalizations
this way, although we can still find useful auxiliary lemmas sometimes (but
usually for quite artificial examples).

Both Zeno and HipSpec instantiate induction schemes while performing proof
by induction. We use a different technique, consisting in checking the correctness
of a proof graph, similarly to productivity and termination checking in languages
like Agda. This approach has some advantages, for example we don’t have to
know the induction depth in advance. Supercompilers usually don’t even check
the correctness because for single-level supercompilation it is ensured automati-
cally. It is not the case for higher-level supercompilation, and for example, HOSC
checks that every lemma used is an improvement lemma in the terminology of
Sand’s theory [19].

9 Conclusion and future work

In this paper we have shown how an inductive prover for a non-total first-order
lazy functional language can be constructed on top of the ideas of equality sat-
uration. The key ingredient is merging by bisimilarity which enables proof by
induction. Another feature that we consider extremely important is the ability
to merge equivalence classes even if they represent functions equal only up to
some renaming. This idea can be extended, for example if we had ticks, we could
merge classes representing functions which differ by a finite number of ticks, but
we haven’t investigated into it yet.

Of course our prover has some deficiencies:

– Our prover lacks proper generalizations. This is a huge issue since many real-
world examples require them. We have an experimental flag that enables
arbitrary generalizations, but it usually leads to combinatorial explosion of
the E-graph. There are two plausible ways to fix this issue. The first one is to
use some heuristics to find generalizations from failed proof attempts, like it’s
done in supercompilers and many inductive provers. The other one is to rely
on some external generalization and lemma discovery tools. In this case a
mechanism of applying externally specified lemmas and generalizations may
be very useful. In the case of E-graphs it is usually done with E-matching,

Inductive Prover Based on Equality Saturation 51

and we have an experimental implementation, although it doesn’t work very
well yet.

– Although it is possible to prove some propositions that hold only in total
setting by adding some transformations, our prover is not very effective on
this task. It may not seem to be a big problem if we only work with non-
total languages like Haskell, but actually even in this case the ability to work
with total values is important since such values may appear even in partial
setting, e.g. when using the function deepseq.

– Our internal representation is untyped, and for this reason we cannot prove
some natural equalities.

– We don’t support higher-order functions internally and need to perform de-
functionalization if the input program contains them. This issue is especially
important if we want to produce a residual program.

– Our prover is limited to propositions about function equivalence, and it is
not obvious how to add support for implications.

Besides mitigating the above problems, another possibility for future work is
exploring other applications. Equality saturation is a program transformation
technique which is not limited to proving function equivalence. Initially it was
successfully applied to imperative program optimization, so some results in the
functional field are to be expected. Even merging by bisimilarity may be of some
use since it is known that using lemmas may lead to superlinear performance
improvement. Another possible area is program analysis.

Acknowledgements

The author would like to express his gratitude to Sergei Romanenko, Andrei
Klimov, Ilya Klyuchnikov, and other participants of the Refal seminar at Keldysh
Institute.

References

1. Graphsc source code and the test suite. https://github.com/sergei-grechanik/
supercompilation-hypergraph.

2. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991. Summary in ACM Symposium on
Principles of Programming Languages (POPL), San Francisco, California, 1990.

3. A. Abel. Foetus – termination checker for simple functional programs, July 16
1998.

4. A. Abel and T. Altenkrich. A predicative analysis of structural recursion. Journal
of Functional Programming, 12(1):1–41, 2002.

5. K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive
proofs using theory exploration. In M. P. Bonacina, editor, Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer
Science, pages 392–406. Springer, 2013.

52 Sergei A. Grechanik

6. K. Claessen, N. Smallbone, and J. Hughes. Quickspec: Guessing formal specifica-
tions using testing. In G. Fraser and A. Gargantini, editors, Tests and Proofs, 4th
International Conference, TAP 2010, Málaga, Spain, July 1-2, 2010. Proceedings,
volume 6143 of Lecture Notes in Computer Science, pages 6–21. Springer, 2010.

7. Detlefs, Nelson, and Saxe. Simplify: A theorem prover for program checking.
JACM: Journal of the ACM, 52, 2005.

8. A. Dovier and C. Piazza. The subgraph bisimulation problem. IEEE Transactions
on Knowledge & Data Engineering, 15(4):1055–6, 2003. Publisher: IEEE, USA.

9. S. A. Grechanik. Overgraph representation for multi-result supercompilation. In
A. Klimov and S. Romanenko, editors, Proceedings of the Third International
Valentin Turchin Workshop on Metacomputation, pages 48–65, Pereslavl-Zalessky,
Russia, July 2012. Pereslavl-Zalessky: Ailamazyan University of Pereslavl.

10. S. A. Grechanik. Supercompilation by hypergraph transformation. Preprint 26,
Keldysh Institute of Applied Mathematics, 2013.
URL: http://library.keldysh.ru/preprint.asp?id=2013-26&lg=e.

11. G. W. Hamilton. Distillation: extracting the essence of programs. In Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 61–70. ACM Press New York, NY, USA, 2007.

12. I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63, Keldysh
Institute of Applied Mathematics, Moscow, 2009.

13. I. Klyuchnikov. Towards effective two-level supercompilation. Preprint 81, Keldysh
Institute of Applied Mathematics, 2010. URL: http://library.keldysh.ru/

preprint.asp?id=2010-81&lg=e.
14. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms

by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

15. I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation. In
Second International Workshop on Metacomputation in Russia, 2010.

16. I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In E. Clarke, I. Vir-
bitskaite, and A. Voronkov, editors, Perspectives of Systems Informatics, 8th An-
drei Ershov Informatics Conference, PSI 2011, Akademgorodok, Novosibirsk, Rus-
sia, June 27 – July 01, 2011, volume 7162 of Lecture Notes in Computer Science,
pages 210–226. Springer, 2012.

17. A. Lisitsa and M. Webster. Supercompilation for equivalence testing in meta-
morphic computer viruses detection. In Proceedings of the First International
Workshop on Metacomputation in Russia, 2008.

18. Nelson and Oppen. Fast decision procedures based on congruence closure. JACM:
Journal of the ACM, 27, 1980.

19. D. Sands. Total correctness by local improvement in the transformation of func-
tional programs. ACM Trans. Program. Lang. Syst., 18(2):175–234, 1996.

20. W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for
properties of recursive data structures. In TACAS, Lecture Notes in Computer
Science, March 2012.

21. M. Sørensen, R. Glück, and N. Jones. A positive supercompiler. Journal of Func-
tional Programming, 6(6):811–838, 1993.

22. M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for LLVM.
In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Pro-
ceedings, volume 6806 of Lecture Notes in Computer Science, pages 737–742.
Springer, 2011.

Inductive Prover Based on Equality Saturation 53

23. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new approach
to optimization. SIGPLAN Not., 44:264–276, January 2009.

24. V. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(3):292–325, 1986.

Staged Multi-Result Supercompilation:
Filtering by Transformation?

Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. When applying supercompilation to problem-solving, multi-
result supercompilation enables us to find the best solutions by gener-
ating a set of possible residual graphs of configurations that are then
filtered according to some criteria. Unfortunately, the search space may
be rather large. However, we show that the search can be drastically
reduced by decomposing multi-result supercompilation into two stages.
The first stage produces a compact representation for the set of residual
graphs by delaying some graph-building operation. These operations are
performed at the second stage, when the representation is interpreted,
to actually produce the set of graphs. The main idea of our approach
is that, instead of filtering a collection of graphs, we can analyze and
clean its compact representation. In some cases of practical importance
(such as selecting graphs of minimal size and removing graphs containing
unsafe configurations) cleaning can be performed in linear time.

1 Introduction

When applying supercompilation [9,19,21,33,35,37–39,42–46] to problem-solving
[10,12,14,15,22,28–32], multi-result supercompilation enables us to find the best
solutions by generating a set of possible residual graphs of configurations that
are then filtered according to some criteria [13,23–25].

Unfortunately, the search space may be rather large [16, 17]. However, we
show that the search can be drastically reduced by decomposing multi-result
supercompilation into two stages [40, 41]. The first stage produces a compact
representation for the set of residual graphs by delaying some graph-building
operation. These operations are performed at the second stage, when the rep-
resentation is interpreted, to actually produce the set of graphs. The main idea
of our approach is that, instead of filtering a collection of graphs, we can ana-
lyze and clean its compact representation. In some cases of practical importance
(such as selecting graphs of minimal size and removing graphs containing unsafe
configurations) cleaning can be performed in linear time.

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

Staged Multi-Result Supercompilation: Filtering by Transformation 55

2 Filtering before Producing. . . How?

2.1 Multi-Result Supercompilation and Filtering

A popular approach to problem solving is trial and error : (1) generate alterna-
tives, (2) evaluate alternatives, (3) select the best alternatives.

Thus, when trying to apply supercompilation to problem solving we nat-
urally come to the idea of multi-result supercompilation: instead of trying to
guess, which residual graph of configurations is “the best” one, a multi-result
supercompiler produces a collection of residual graphs.

Suppose we have a multi-result supercompiler mrsc and a filter filter. Com-
bining them, we get a problem-solver

solver = filter ◦ mrsc

where mrsc is a general-purpose tool (at least to some extent), while filter
incorporates some knowledge about the problem domain. A good feature of this
design is its modularity and the clear separation of concerns: in the ideal case,
mrsc knows nothing about the problem domain, while filter knows nothing
about supercompilation.

2.2 Fusion of Supercompilation and Filtering

However, the main problem with multi-result supercompilation is that it can
produce millions of residual graphs! Hence, it seems to be a good idea to suppress
the generation of the majority of residual graphs “on the fly”, in the process of
supercompilation. This can be achieved if the criteria filter is based upon are
“monotonic”: if some parts of a partially constructed residual graph are “bad”,
then the completed residual graph is also certain to be a “bad” one1.

We can exploit monotonicity by fusing filter and mrsc into a monolithic
program

solver′ = fuse filter mrsc

where fuse is an automatic tool (based, for example, on supercompilation), or
just a postgraduate who has been taught (by his scientific adviser) to perform
fusion by hand. :-)

An evident drawback of this approach is its non-modularity. Every time
filter is modified, the fusion of mrsc and filter has to be repeated.

2.3 Staged Supercompilation: Multiple Results Seen as a Residual
Program

Here we put forward an alternative approach that:
1 Note the subtle difference between “monotonic” and “finitary” [39]. “Monotonic”
means that a bad situation cannot become good, while “finitary” means that a good
situation cannot forever remain good.

56 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

1. Completely separates supercompilation from filtering.
2. Enables filtering of partially constructed residual graphs.

Thus the technique is modular, and yet reduces the search space and con-
sumed computational resources.

Our “recipe” is as follows. (1) Replace “small-step” supercompilation with
“big-step” supercompilation. (2) Decompose supercompilation into two stages.
(3) Consider the result of the first stage as a “program” to be interpreted by the
second stage. (4) Transform the “program” to reduce the number of graphs to
be produced.

Small-step ⇒ big-step Supercompilation can be formulated either in “small-
step” or in “big-step” style. Small-step supercompilation proceeds by rewriting a
graph of configurations. Big-step supercompilation is specified/implemented in
compositional style: the construction of a graph amounts to constructing its sub-
graphs, followed by synthesizing the whole graph from its previously constructed
parts. Multi-result supercompilation was formulated in small-step style [23, 24].
First of all, given a small-step multi-result supercompiler mrsc, we can refactor
it, to produce a big-step supercompiler naive-mrsc (see details in Section 3).

Identifying Cartesian products Now, examining the text of naive-mrsc
(presented in Section 3), we can see that, at some places, naive-mrsc calculates
“Cartesian products”: if a graph g is to be constructed from k subgraphs g1, . . . ,
gk, naive-mrsc computes k sets of graphs gs1, . . . , gsk and then considers all
possible gi ∈ gsi for i = 1, . . . , k and constructs corresponding versions of the
graph g.

Staging: delaying Cartesian products At this point the process of super-
compilation can be decomposed into two stages

naive-mrsc $ 〈〈_〉〉 ◦ lazy-mrsc

where 〈〈_〉〉 is a unary function, and f $ g means that f x = g x for all x.
At the first stage, lazy-mrsc generates a “lazy graph”, which, essentially, is

a “program” to be “executed” by 〈〈_〉〉. Unlike naive-mrsc, lazy-mrsc does not
calculate Cartesian products immediately: instead, it outputs requests for 〈〈_〉〉
to calculate them at the second stage.

Fusing filtering with the generation of graphs Suppose, l is a lazy graph
produced by lazy-mrsc. By evaluating 〈〈 l 〉〉, we can generate the same bag of
graphs, as would have been produced by the original naive-mrsc.

However, usually, we are not interested in the whole bag 〈〈 l 〉〉. The goal is
to find “the best” or “most interesting” graphs. Hence, there should be developed
some techniques of extracting useful information from a lazy graph l without
evaluating 〈〈 l 〉〉 directly.

Staged Multi-Result Supercompilation: Filtering by Transformation 57

This can be formulated in the following form. Suppose that a function filter
filters bags of graphs, removing “bad” graphs, so that

filter 〈〈 l 〉〉

generates the bag of “good” graphs. Let clean be a transformer of lazy graphs
such that

filter ◦ 〈〈_〉〉 $ 〈〈_〉〉 ◦ clean

which means that filter 〈〈 l 〉〉 and 〈〈 clean l 〉〉 always return the same
collection of graphs.

In general, a lazy graph transformer clean is said to be a cleaner if for any
lazy graph l

〈〈 clean l 〉〉 ⊆ 〈〈 l 〉〉

The nice property of cleaners is that they are composable: given clean1 and
clean2, clean2 ◦ clean1 is also a cleaner.

2.4 Typical Cleaners

Typical tasks are finding graphs of minimal size and removing graphs that con-
tain “bad” configurations. It is easy to implement corresponding cleaners in such
a way that the lazy graph is traversed only once, in a linear time.

2.5 What are the Advantages?

We get the following scheme:

filter ◦ naive-mrsc $
filter ◦ 〈〈_〉〉 ◦ lazy-mrsc $ 〈〈_〉〉 ◦ clean ◦ lazy-mrsc

We can see that:

– The construction is modular: lazy-mrsc and 〈〈_〉〉 do not have to know any-
thing about filtering, while clean does not have to know anything about
lazy-mrsc and 〈〈_〉〉.

– Cleaners are composable: we can decompose a sophisticated cleaner into a
composition of simpler cleaners.

– In many cases (of practical importance) cleaners can be implemented in such
a way that the best graphs can be extracted from a lazy graph in linear time.

58 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

2.6 Codata and Corecursion: Decomposing lazy-mrsc

By using codata and corecursion, we can decompose lazy-mrsc into two stages

lazy-mrsc $ prune-cograph ◦ build-cograph

where build-cograph constructs a (potentially) infinite tree, while prune-cograph
traverses this tree and turns it into a lazy graph (which is finite).

The point is that build-cograph performs driving and rebuilding configura-
tions, while prune-cograph uses whistle to turn an infinite tree to a finite graph.
Thus build-cograph knows nothing about the whistle, while prune-cograph
knows nothing about driving and rebuilding. This further improves the modu-
larity of multi-result supercompilation.

2.7 Cleaning before Whistling

Now it turnes out that some cleaners can be pushed over prune-cograph!
Suppose clean is a lazy graph cleaner and clean∞ a cograph cleaner, such

that

clean ◦ prune-cograph $ prune-cograph ◦ clean∞

then

clean ◦ lazy-mrsc $
clean ◦ prune-cograph ◦ build-cograph $
prune-cograph ◦ clean∞ ◦ build-cograph

The good thing is that build-cograph and clean∞ work in a lazy way, gener-
ating subtrees by demand. Hence, evaluating

〈〈 prune-cograph ◦ (clean∞ (build-cograph c)) 〉〉

is likely to be less time and space consuming than directly evaluating

〈〈 clean (lazy-mrsc c) 〉〉

3 A Model of Big-Step Multi-Result Supercompilation

We have formulated and implemented in Agda [2] an idealized model of big-step
multi-result supercompilation [1]. This model is rather abstract, and yet it can
be instantiated to produce runnable supercompilers. By the way of example, the
abstract model has been instantiated to produce a multi-result supercompiler
for counter systems [16].

Staged Multi-Result Supercompilation: Filtering by Transformation 59

3.1 Graphs of Configurations

Given an initial configuration c, a supercompiler produces a list of “residual”
graphs of configurations: g1, . . . , gk.

Graphs of configurations are supposed to represent “residual programs” and
are defined in Agda (see Graphs.agda) [2] in the following way:

data Graph (C : Set) : Set where
back : ∀ (c : C) → Graph C
forth : ∀ (c : C) (gs : List (Graph C)) → Graph C

Technically, a Graph C is a tree, with back nodes being references to parent
nodes.

A graph’s nodes contain configurations. Here we abstract away from the
concrete structure of configurations. In this model the arrows in the graph carry
no information, because, this information can be kept in nodes. (Hence, this
information is supposed to be encoded inside “configurations”.)

To simplify the machinery, back-nodes in this model of supercompilation do
not contain explicit references to parent nodes. Hence, back c means that c is
foldable to a parent configuration (perhaps, to several ones).

– Back-nodes are produced by folding a configuration to another configuration
in the history.

– Forth-nodes are produced by
• decomposing a configuration into a number of other configurations (e.g.

by driving or taking apart a let-expression), or
• by rewriting a configuration by another one (e.g. by generalization, in-

troducing a let-expression or applying a lemma during two-level super-
compilation).

3.2 “Worlds” of Supercompilation

The knowledge about the input language a supercompiler deals with is repre-
sented by a “world of supercompilation”, which is a record that specifies the
following2.

– Conf is the type of “configurations”. Note that configurations are not required
to be just expressions with free variables! In general, they may represent
sets of states in any form/language and as well may contain any additional
information.

– _v_ is a “foldability relation”. c v c′ means that c is “foldable” to c′. (In
such cases c′ is usually said to be “more general” than c.)

– _v?_ is a decision procedure for _v_. This procedure is necessary for im-
plementing algorithms of supercompilation.

2 Note that in Agda a function name containing one or more underscores can be used
as a “mixfix” operator. Thus a + b is equivalent to _+_ a b, if a then b else c
to if_then_else_ a b c and [c] to [_] c.

60 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

– _⇒ is a function that gives a number of possible decompositions of a con-
figuration. Let c be a configuration and cs a list of configurations such that
cs ∈ c ⇒. Then c can be “reduced to” (or “decomposed into”) configura-
tions cs.
Suppose that “driving” is deterministic and, given a configuration c, produces
a list of configurations c �. Suppose that “rebuilding” (generalization, appli-
cation of lemmas) is non-deterministic and c y is the list of configurations
that can be produced by rebuilding. Then (in this special case) _⇒ can be
implemented as follows:

c ⇒ = [c �] ++ map [_] (c y)

– whistle is a “bar whistle” [6] that is used to ensure termination of functional
supercompilation (see details in Section 3.6) .

Thus we have the following definition in Agda3:

record ScWorld : Set1 where

field
Conf : Set
v : (c c′ : Conf) → Set
v? : (c c′ : Conf) → Dec (c v c′)
_⇒ : (c : Conf) → List (List Conf)
whistle : BarWhistle Conf

open BarWhistle whistle public

History : Set
History = List Conf

Foldable : ∀ (h : History) (c : Conf) → Set
Foldable h c = Any (_v_ c) h

foldable? : ∀ (h : History) (c : Conf) → Dec (Foldable h c)
foldable? h c = Any.any (_v?_ c) h

Note that, in addition to (abstract) fields, there are a few concrete type and
function definitions4.

– History is a list of configuration that have been produced in order to reach
the current configuration.

– Foldable h c means that c is foldable to a configuration in the history h.
– foldable? h c decides whether Foldable h c.

3 Record declarations in Agda are analogous to “abstract classes” in functional lan-
guages and “structures” in Standard ML, abstract members being declared as “fields”.

4 The construct open BarWhistle whistle public brings the members of whistle
into scope, so that they become accessible directly.

Staged Multi-Result Supercompilation: Filtering by Transformation 61

3.3 Graphs with labeled edges

If we need labeled edges in the graph of configurations, the labels can be hid-
den inside configurations. (Recall that “configurations” do not have to be just
symbolic expressions, as they can contain any additional information.)

Here is the definition in Agda of worlds of supercompilation with labeled
edges:

record ScWorldWithLabels : Set1 where
field

Conf : Set -- configurations
Label : Set -- edge labels
v : (c c′ : Conf) → Set -- c is foldable to c′

v? : (c c′ : Conf) → Dec (c v c′) -- v is decidable
-- Driving/splitting/rebuilding a configuration:
_⇒ : (c : Conf) → List (List (Label × Conf))
-- a bar whistle
whistle : BarWhistle Conf

There is defined (in BigStepSc.agda) a function

injectLabelsInScWorld : ScWorldWithLabels → ScWorld

that injects a world with labeled edges into a world without labels (by hiding
labels inside configurations).

3.4 A Relational Specification of Big-Step Non-Deterministic
Supercompilation

In BigStepSc.agda there is given a relational definition of non-deterministic
supercompilation [24] in terms of two relations

infix 4 _`NDSC_↪→_ _`NDSC*_↪→_

data _`NDSC_↪→_ : ∀ (h : History) (c : Conf)
(g : Graph Conf) → Set

`NDSC*↪→_ : ∀ (h : History) (cs : List Conf)
(gs : List (Graph Conf)) → Set

which are defined with respect to a world of supercompilation.
Let h be a history, c a configuration and g a graph. Then h `NDSC c ↪→ g

means that g can be produced from h and c by non-deterministic supercompi-
lation.

Let h be a history, cs a list of configurations, gs a list of graphs, and
length cs = length gs. Then h `NDSC* cs ↪→ gs means that each g ∈ gs
can be produced from the history h and the corresponding c ∈ cs by non-
deterministic supercompilation. Or, in Agda:

h `NDSC* cs ↪→ gs = Pointwise.Rel (_`NDSC_↪→_ h) cs gs

62 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

`NDSC_↪→_ is defined by two rules

data _`NDSC_↪→_ where
ndsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h `NDSC c ↪→ back c

ndsc-build : ∀ {h : History} {c}
{cs : List (Conf)} {gs : List (Graph Conf)}
(¬f : ¬ Foldable h c)
(i : cs ∈ c ⇒)
(s : (c :: h) `NDSC* cs ↪→ gs) →
h `NDSC c ↪→ forth c gs

The rule ndsc-fold says that if c is foldable to a configuration in h there
can be produced the graph back c (consisting of a single back-node).

The rule ndsc-build says that there can be produced a node forth c gs if
the following conditions are satisfied.

– c is not foldable to a configuration in the history h.
– c ⇒ contains a list of configurations cs, such that

(c :: h) `NDSC* cs ↪→ gs.

Speaking more operationally, the supercompiler first decides how to decom-
pose c into a list of configurations cs by selecting a cs ∈ c ⇒. Then, for each
configuration in cs the supercompiler produces a graph, to obtain a list of graphs
gs, and builds the graph c ↪→ forth c gs.

3.5 A Relational Specification of Big-Step Multi-Result
Supercompilation

The main difference between multi-result and non-deterministic supercompila-
tion is that multi-result uses a whistle (see Whistles.agda) in order to ensure
the finiteness of the collection of residual graphs [24].

In BigStepSc.agda there is given a relational definition of multi-result su-
percompilation in terms of two relations

infix 4 _`MRSC_↪→_ _`MRSC*_↪→_

data _`MRSC_↪→_ : ∀ (h : History) (c : Conf)
(g : Graph Conf) → Set

`MRSC*↪→_ : ∀ (h : History) (cs : List Conf)
(gs : List (Graph Conf)) → Set

Again, _`MRSC*_↪→_ is a “point-wise” version of _`MRSC_↪→_:

h `MRSC* cs ↪→ gs = Pointwise.Rel (_`MRSC_↪→_ h) cs gs

`MRSC↪→_ is defined by two rules

Staged Multi-Result Supercompilation: Filtering by Transformation 63

data _`MRSC_↪→_ where
mrsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h `MRSC c ↪→ back c

mrsc-build : ∀ {h : History} {c}
{cs : List Conf} {gs : List (Graph Conf)}
(¬f : ¬ Foldable h c)
(¬w : ¬ � h) →
(i : cs ∈ c ⇒)
(s : (c :: h) `MRSC* cs ↪→ gs) →
h `MRSC c ↪→ forth c gs

We can see that _`NDSC_↪→_ and _`MRSC_↪→_ differ only in that there is an
additional condition ¬ � h in the rule mrsc-build.

The predicate � is provided by the whistle, � h meaning that the history h is
“dangerous”. Unlike the rule ndsc-build, the rule mrsc-build is only applicable
when ¬ � h, i.e. the history h is not dangerous.

Multi-result supercompilation is a special case of non-deterministic super-
compilation, in the sense that any graph produced by multi-result supercompi-
lation can also be produced by non-deterministic supercompilation:

MRSC→NDSC : ∀ {h : History} {c g} →
h `MRSC c ↪→ g → h `NDSC c ↪→ g

A proof of this theorem can be found in BigStepScTheorems.agda.

3.6 Bar Whistles

Now we are going to give an alternative definition of multi-result supercompila-
tion in form of a total function naive-mrsc. The termination of naive-mrsc is
guaranteed by a “whistle”.

In our model of big-step supercompilation whistles are assumed to be “induc-
tive bars” [6] and are defined in Agda in the following way.

First of all, BarWhistles.agda contains the following declaration of Bar D h:

data Bar {A : Set} (D : List A → Set) :
(h : List A) → Set where

now : {h : List A} (bz : D h) → Bar D h
later : {h : List A} (bs : ∀ c → Bar D (c :: h)) → Bar D h

At the first glance, this declaration looks as a puzzle. But, actually, it is not
as mysterious as it may seem.

We consider sequences of elements (of some type A), and a predicate D. If D h
holds for a sequence h, h is said to be “dangerous”.

Bar D h means that either (1) h is dangerous, i.e. D h is valid right now
(the rule now), or (2) Bar D (c :: h) is valid for all possible c :: h (the rule
later). Hence, for any continuation c :: h the sequence will eventually become
dangerous.

64 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

The subtle point is that if Bar D [] is valid, it implies that any sequence
will eventually become dangerous.

A bar whistle is a record (see BarWhistles.agda)

record BarWhistle (A : Set) : Set1 where
field

� : (h : List A) → Set
�:: : (c : A) (h : List A) → � h → � (c :: h)
�? : (h : List A) → Dec (� h)

bar[] : Bar � []

where

– � is a predicate on sequences, � h meaning that the sequence h is dangerous.
– �:: postulates that if � h then � (c :: h) for all possible c :: h. In other

words, if h is dangerous, so are all continuations of h.
– �? says that � is decidable.
– bar[] says that any sequence eventually becomes dangerous. (In Coquand’s

terms, Bar � is required to be “an inductive bar”.)

3.7 A Function for Computing Cartesian Products

The functional specification of big-step multi-result supercompilation considered
in the following section is based on the function cartesian:

cartesian2 : ∀ {A : Set} → List A → List (List A) → List (List A)
cartesian2 [] yss = []
cartesian2 (x :: xs) yss = map (_::_ x) yss ++ cartesian2 xs yss

cartesian : ∀ {A : Set} (xss : List (List A)) → List (List A)
cartesian [] = [[]]
cartesian (xs :: xss) = cartesian2 xs (cartesian xss)

cartesian takes as input a list of lists xss. Each list xs ∈ xss represents
the set of possible values of the correspondent component.

Namely, suppose that xss has the form xs1, xs2, . . . , xsk Then cartesian
returns a list containing all possible lists of the form x1 :: x2 :: . . . :: xk :: []
where xi ∈ xsi. In Agda, this property of cartesian is formulated as follows:

∈*↔∈cartesian :
∀ {A : Set} {xs : List A} {yss : List (List A)} →

Pointwise.Rel _∈_ xs yss ↔ xs ∈ cartesian yss

A proof of the theorem ∈*↔∈cartesian can be found in Util.agda.

Staged Multi-Result Supercompilation: Filtering by Transformation 65

3.8 A Functional Specification of Big-Step Multi-Result
Supercompilation

A functional specification of big-step multi-result supercompilation is given in the
form of a total function (in BigStepSc.agda) that takes the initial configuration
c and returns a list of residual graphs:

naive-mrsc : (c : Conf) → List (Graph Conf)
naive-mrsc′ : ∀ (h : History) (b : Bar � h) (c : Conf) →

List (Graph Conf)

naive-mrsc c = naive-mrsc′ [] bar[] c

naive-mrsc is defined in terms of a more general function naive-mrsc′, which
takes more arguments: a history h, a proof b of the fact Bar � h, and a config-
uration c.

Note that naive-mrsc calls naive-mrsc′ with the empty history and has to
supply a proof of the fact Bar � []. But this proof is supplied by the whistle!

naive-mrsc′ h b c with foldable? h c
... | yes f = [back c]
... | no ¬f with �? h
... | yes w = []
... | no ¬w with b
... | now bz with ¬w bz
... | ()
naive-mrsc′ h b c | no ¬f | no ¬w | later bs =

map (forth c)
(concat (map (cartesian ◦ map

(naive-mrsc′ (c :: h) (bs c))) (c ⇒)))

The definition of naive-mrsc′ is straightforward5.

– If c is foldable to the history h, a back-node is generated and the function
terminates.

– Otherwise, if � h (i.e. the history h is dangerous), the function terminates
producing no graphs.

– Otherwise, h is not dangerous, and the configuration c can be decomposed.
(Also there are some manipulations with the parameter b that will be ex-
plained later.)

– Thus c ⇒ returns a list of lists of configurations. The function considers each
cs ∈ c ⇒, and, for each c′ ∈ cs recursively calls itself in the following way:

naive-mrsc′ (c :: h) (bs c) c′

5 In Agda, with e means that the value of e has to be matched against the patterns
preceded with ... |. () is a pattern denoting a logically impossible case, for which
reason () is not followed by a right hand side.

66 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

producing a list of residual graphs gs′. So, cs is transformed into gss, a list
of lists of graphs. Note that
length cs = length gss.

– Then the function computes cartesian product cartesian gss, to produce
a list of lists of graphs. Then the results corresponding to each cs ∈ c ⇒
are concatenated by concat.

– At this moment the function has obtained a list of lists of graphs, and calls
map (forth c) to turn each graph list into a forth-node.

The function naive-mrsc is correct (sound and complete) with respect to
the relation _`MRSC_↪→_:

`MRSC↪→⇔naive-mrsc :
{c : Conf} {g : Graph Conf} →
[] `MRSC c ↪→ g ⇔ g ∈ naive-mrsc c

A proof of this theorem can be found in BigStepScTheorems.agda.

3.9 Why Does naive-mrsc′ Always Terminate?

The problem with naive-mrsc′ is that in the recursive call

naive-mrsc′ (c :: h) (bs c) c′

the history grows (h becomes c :: h), and the configuration is replaced with
another configuration of unknown size (c becomes c′). Hence, these parameters
do not become “structurally smaller”.

But Agda’s termination checker still accepts this recursive call, because the
second parameter does become smaller (later bs becomes bs c). Note that the
termination checker considers bs and bs c to be of the same “size”. Since bs is
smaller than later bs (a constructor is removed), and bs and bs c are of the
same size, bs c is “smaller” than later bs.

Thus the purpose of the parameter b is to persuade the termination checker
that the function terminates. If lazy-mrsc is reimplemented in a language in
which the totality of functions is not checked, the parameter b is not required
and can be removed.

4 Staging Big-Step Multi-Result Supercompilation

As was said above, we can decompose the process of supercompilation into two
stages

naive-mrsc $ 〈〈_〉〉 ◦ lazy-mrsc

At the first stage, lazy-mrsc generates a “lazy graph”, which, essentially, is a
“program” to be “executed” by 〈〈_〉〉.

Staged Multi-Result Supercompilation: Filtering by Transformation 67

4.1 Lazy Graphs of Configurations

A LazyGraph C represents a finite set of graphs of configurations (whose type is
Graph C).

data LazyGraph (C : Set) : Set where
Ø : LazyGraph C
stop : (c : C) → LazyGraph C
build : (c : C) (lss : List (List (LazyGraph C))) → LazyGraph C

A lazy graph is a tree whose nodes are “commands” to be executed by the
interpreter 〈〈_〉〉.

The exact semantics of lazy graphs is given by the function 〈〈_〉〉, which calls
auxiliary functions 〈〈_〉〉* and 〈〈_〉〉⇒ (see Graphs.agda).

〈〈_〉〉 : {C : Set} (l : LazyGraph C) → List (Graph C)
〈〈_〉〉* : {C : Set} (ls : List (LazyGraph C)) →

List (List (Graph C))
〈〈_〉〉⇒ : {C : Set} (lss : List (List (LazyGraph C))) →

List (List (Graph C))

Here is the definition of the main function 〈〈_〉〉:

〈〈 Ø 〉〉 = []
〈〈 stop c 〉〉 = [back c]
〈〈 build c lss 〉〉 = map (forth c) 〈〈 lss 〉〉⇒

It can be seen that Ø means “generate no graphs”, stop means “generate a back-
node and stop”.

The most interesting case is a build-node build c lss, where c is a configu-
ration and lss a list of lists of lazy graphs. Recall that, in general, a configuration
can be decomposed into a list of configurations in several different ways. Thus,
each ls ∈ lss corresponds to a decomposition of c into a number of configura-
tions c1, . . . ck. By supercompiling each ci we get a collection of graphs that can
be represnted by a lazy graph lsi.

The function 〈〈_〉〉* considers each lazy graph in a list of lazy graphs ls, and
turns it into a list of graphs:

〈〈 [] 〉〉* = []
〈〈 l :: ls 〉〉* = 〈〈 l 〉〉 :: 〈〈 ls 〉〉*

The function 〈〈_〉〉⇒ considers all possible decompositions of a configuration, and
for each decomposition computes all possible combinations of subgraphs:

〈〈 [] 〉〉⇒ = []
〈〈 ls :: lss 〉〉⇒ = cartesian 〈〈 ls 〉〉* ++ 〈〈 lss 〉〉⇒

68 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

There arises a natural question: why 〈〈_〉〉* is defined by explicit recursion, while
it does exactly the same job as would do map 〈〈_〉〉? The answer is that Agda’s
termination checker does not accept map 〈〈_〉〉, because it cannot see that the
argument in the recursive calls to 〈〈_〉〉 becomes structurally smaller. For the
same reason 〈〈_〉〉⇒ is also defined by explicit recursion.

4.2 A Functional Specification of Lazy Multi-Result
Supercompilation

Given a configuration c, the function lazy-mrsc produces a lazy graph.

lazy-mrsc : (c : Conf) → LazyGraph Conf

lazy-mrsc is defined in terms of a more general function lazy-mrsc′

lazy-mrsc′ : ∀ (h : History) (b : Bar � h)
(c : Conf) → LazyGraph Conf

lazy-mrsc c = lazy-mrsc′ [] bar[] c

The general structure of lazy-mrsc′ is very similar (see Section 3) to that of
naive-mrsc′, but, unlike naive-mrsc, it does not build Cartesian products im-
mediately.

lazy-mrsc′ h b c with foldable? h c
... | yes f = stop c
... | no ¬f with �? h
... | yes w = Ø
... | no ¬w with b
... | now bz with ¬w bz
... | ()
lazy-mrsc′ h b c | no ¬f | no ¬w | later bs =

build c (map (map (lazy-mrsc′ (c :: h) (bs c))) (c ⇒))

Let us compare the most interesting parts of naive-mrsc and lazy-mrsc:

map (forth c)
(concat (map (cartesian ◦

map (naive-mrsc′ (c :: h) (bs c))) (c ⇒)))
...
build c (map (map (lazy-mrsc′ (c :: h) (bs c))) (c ⇒))

Note that cartesian disappears from lazy-mrsc.

4.3 Correctness of lazy-mrsc and 〈〈_〉〉
lazy-mrsc and 〈〈_〉〉 are correct with respect to naive-mrsc. In Agda this is
formulated as follows:

naive≡lazy : (c : Conf) → naive-mrsc c ≡ 〈〈 lazy-mrsc c 〉〉

Staged Multi-Result Supercompilation: Filtering by Transformation 69

In other words, for any initial configuraion c, 〈〈 lazy-mrsc c 〉〉 returns the
same list of graphs (the same configurations in the same order!) as would return
naive-mrsc c.

A formal proof of naive≡lazy can be found in BigStepScTheorems.agda.

5 Cleaning Lazy Graphs

As was said in Section 2.3, we can replace filtering of graphs with cleaning of
lazy graphs

filter ◦ naive-mrsc $ 〈〈_〉〉 ◦ clean ◦ lazy-mrsc

In Graphs.agda there are defined a number of filters and corresponding cleaners.

5.1 Filter fl-bad-conf and Cleaner cl-bad-conf

Configurations represent states of a computation process. Some of these states
may be “bad” with respect to the problem that is to be solved by means of
supercompilation.

Given a predicate bad that returns true for “bad” configurations,
fl-bad-conf bad gs removes from gs the graphs that contain at least one “bad”
configuration.

The cleaner cl-bad-conf corresponds to the filter fl-bad-conf.
cl-bad-conf exploits the fact that “badness” is monotonic, in the sense that
a single “bad” configuration spoils the whole graph.

fl-bad-conf : {C : Set} (bad : C → Bool) (gs : List (Graph C)) →
List (Graph C)

cl-bad-conf : {C : Set} (bad : C → Bool) (l : LazyGraph C) →
LazyGraph C

cl-bad-conf is correct with respect to fl-bad-conf:

cl-bad-conf-correct : {C : Set} (bad : C → Bool) →
〈〈_〉〉 ◦ cl-bad-conf bad $ fl-bad-conf bad ◦ 〈〈_〉〉

A formal proof of this theorem is given in GraphsTheorems.agda.
It is instructive to take a look at the implementation of cl-bad-conf in

Graphs.agda, to get the general idea of how cleaners are really implemented:

cl-bad-conf : {C : Set} (bad : C → Bool) (l : LazyGraph C) →
LazyGraph C

cl-bad-conf⇒ : {C : Set} (bad : C → Bool)
(lss : List (List (LazyGraph C))) → List (List (LazyGraph C))

70 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

cl-bad-conf* : {C : Set} (bad : C → Bool)
(ls : List (LazyGraph C)) → List (LazyGraph C)

cl-bad-conf bad Ø = Ø
cl-bad-conf bad (stop c) =

if bad c then Ø else (stop c)
cl-bad-conf bad (build c lss) =

if bad c then Ø else (build c (cl-bad-conf⇒ bad lss))

cl-bad-conf⇒ bad [] = []
cl-bad-conf⇒ bad (ls :: lss) =

cl-bad-conf* bad ls :: (cl-bad-conf⇒ bad lss)

cl-bad-conf* bad [] = []
cl-bad-conf* bad (l :: ls) =

cl-bad-conf bad l :: cl-bad-conf* bad ls

5.2 Cleaner cl-empty

cl-empty is a cleaner that removes subtrees of a lazy graph that represent empty
sets of graphs6.

cl-empty : {C : Set} (l : LazyGraph C) → LazyGraph C

cl-bad-conf is correct with respect to 〈〈_〉〉:

cl-empty-correct : ∀ {C : Set} (l : LazyGraph C) →
〈〈 cl-empty l 〉〉 ≡ 〈〈 l 〉〉

A formal proof of this theorem is given in GraphsTheorems.agda.

5.3 Cleaner cl-min-size

The function cl-min-size

cl-min-size : ∀ {C : Set} (l : LazyGraph C) → N × LazyGraph C

takes as input a lazy graph l and returns either (0 , Ø), if l contains no graphs,
or a pair (k , l′), where l′ is a lazy graph, representing a single graph g′ of
minimal size k7.

More formally,

– 〈〈 l′ 〉〉 = [g′].
– graph-size g′ = k

6 Empty sets of graphs may appear when multi-result supercompilation gets into a
blind alley: the whistle blows, but neither folding nor rebuilding is possible.

7 This cleaner is useful in cases where we use supercompilation for problem solving
and want to find a solution of minimum size.

Staged Multi-Result Supercompilation: Filtering by Transformation 71

– k ≤ graph-size g for all g ∈ 〈〈 l 〉〉.

The main idea behind cl-min-size is that, if we have a node build c lss,
then we can clean each ls ∈ lss, to produce lss′, a cleaned version of lss.

Let us consider an ls ∈ lss. We can clean with cl-min-size each l ∈ ls
to obtain ls′ a new list of lazy graphs . If Ø ∈ ls′, we replace the node build c lss
with Ø. The reason is that computing the Cartesian product for ls′ would pro-
duce an empty set of results. Otherwise, we replace build c lss with build c lss′.

The details of how cl-min-size is implemented can be found in Graphs.agda.
A good thing about cl-min-size is it cleans any lazy graph l in linear time

with respect to the size of l.

6 Codata and Corecursion: Cleaning before Whistling

By using codata and corecursion, we can decompose lazy-mrsc into two stages

lazy-mrsc $ prune-cograph ◦ build-cograph

where build-cograph constructs a (potentially) infinite tree, while prune-cograph
traverses this tree and turns it into a lazy graph (which is finite).

6.1 Lazy Cographs of Configurations

A LazyCograph C represents a (potentially) infinite set of graphs of configura-
tions whose type is Graph C (see Cographs.agda).

data LazyCograph (C : Set) : Set where
Ø : LazyCograph C
stop : (c : C) → LazyCograph C
build : (c : C)

(lss : ∞(List (List (LazyCograph C)))) → LazyCograph C

Note that LazyCograph C differs from LazyGraph C the evaluation of lss in
build-nodes is delayed.

6.2 Building Lazy Cographs

Lazy cographs are produced by the function build-cograph

build-cograph : (c : Conf) → LazyCograph Conf

which can be derived from the function lazy-mrsc by removing the machinery
related to whistles.

build-cograph is defined in terms of a more general function build-cographs′.

build-cograph′ : (h : History) (c : Conf) → LazyCograph Conf
build-cograph c = build-cograph′ [] c

72 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

The definition of build-cograph′ uses auxiliary functions build-cograph⇒ and
build-cograph*, while the definition of lazy-mrsc just calls map at correspond-
ing places. This is necessary in order for build-cograph′ to pass Agda’s “pro-
ductivity” check.

build-cograph⇒ : (h : History) (c : Conf)
(css : List (List Conf)) → List (List (LazyCograph Conf))

build-cograph* : (h : History)
(cs : List Conf) → List (LazyCograph Conf)

build-cograph′ h c with foldable? h c
... | yes f = stop c
... | no ¬f =

build c (] build-cograph⇒ h c (c ⇒))

build-cograph⇒ h c [] = []
build-cograph⇒ h c (cs :: css) =

build-cograph* (c :: h) cs :: build-cograph⇒ h c css

build-cograph* h [] = []
build-cograph* h (c :: cs) =

build-cograph′ h c :: build-cograph* h cs

6.3 Pruning Lazy Cographs

A lazy cograph can be pruned by means of the function prune-cograph to obtain
a finite lazy graph.

prune-cograph : (l : LazyCograph Conf) → LazyGraph Conf

which can be derived from the function lazy-mrsc by removing the machinery
related to generation of nodes (since it only consumes nodes that have been
generated by build-cograph).

prune-cograph is defined in terms of a more general function prune-cograph′:

prune-cograph l = prune-cograph′ [] bar[] l

The definition of prune-cograph′ uses the auxiliary function prune-cograph*.

prune-cograph* : (h : History) (b : Bar � h)
(ls : List (LazyCograph Conf)) → List (LazyGraph Conf)

prune-cograph′ h b Ø = Ø
prune-cograph′ h b (stop c) = stop c
prune-cograph′ h b (build c lss) with �? h
... | yes w = Ø
... | no ¬w with b

Staged Multi-Result Supercompilation: Filtering by Transformation 73

... | now bz with ¬w bz

... | ()
prune-cograph′ h b (build c lss) | no ¬w | later bs =

build c (map (prune-cograph* (c :: h) (bs c)) ([lss))

prune-cograph* h b [] = []
prune-cograph* h b (l :: ls) =

prune-cograph′ h b l :: (prune-cograph* h b ls)

Note that, when processing a node build c lss, the evaluation of lss has to
be explicitly forced by [.

prune-cograph and build-cograph are correct with respect to lazy-mrsc:

prune◦build-correct :
prune-cograph ◦ build-cograph $ lazy-mrsc

A proof of this theorem can be found in Cographs.agda.

6.4 Promoting some Cleaners over the Whistle

Suppose clean∞ is a cograph cleaner such that

clean ◦ prune-cograph $ prune-cograph ◦ clean∞
then

clean ◦ lazy-mrsc $
clean ◦ prune-cograph ◦ build-cograph $
prune-cograph ◦ clean∞ ◦ build-cograph

The good thing about build-cograph and clean∞ is that they work in a
lazy way, generating subtrees by demand. Hence, evaluating

〈〈 prune-cograph ◦ (clean∞ (build-cograph c)) 〉〉
may be less time and space consuming than evaluating

〈〈 clean (lazy-mrsc c) 〉〉
In Cographs.agda there is defined a cograph cleaner cl-bad-conf∞ that takes
a lazy cograph and prunes subrees containing bad configurations, returning a
lazy subgraph (which can be infinite):

cl-bad-conf∞ : {C : Set} (bad : C → Bool) (l : LazyCograph C) →
LazyCograph C

cl-bad-conf∞ is correct with respect to cl-bad-conf:

cl-bad-conf∞-correct : (bad : Conf → Bool) →
cl-bad-conf bad ◦ prune-cograph $

prune-cograph ◦ cl-bad-conf∞ bad

A proof of this theorem can be found in Cographs.agda.

74 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

7 Related Work

The idea that supercompilation can produce a compact representation of a collec-
tion of residual graphs is due to Grechanik [7,8]. In particular, the data structure
‘LazyGraph C‘ we use for representing the results of the first phase of the staged
multi-result supercompiler can be considered as a representation of "overtrees",
which was informally described in [7].

Big-step supercompilation was studied and implemented by Bolingbroke and
Peyton Jones [4]. Our approach differs in that we are interested in applying
supercompilation to problem solving. Thus

– We consider multi-result supercompilation, rather than single-result super-
compilation.

– Our big-step supercompilation constructs graphs of configurations in an ex-
plicit way, because the graphs are going to be filtered and/or analyzed at a
later stage.

– Bolingbroke and Peyton Jones considered big-step supercompilation in func-
tional form, while we have studied both a relational specification of big-step
supercompilation and the functional one and have proved the correctness of
the functional specification with respect to the relational one.

A relational specification of single-result supercompilation was suggested by
Klimov [11], who argued that supercompilation relations can be used for sim-
plifying proofs of correctness of supercompilers. Later, Klyuchnikov [20] used
a supercompilation relation for proving the correctness of a small-step single-
result supercompiler for a higher-order functional language. In the present work
we consider a supercompilation relation for a big-step multi-result supercompi-
lation.

We have developed an abstract model of big-step multi-result supercompila-
tion in the language Agda and have proved a number of properties of this model.
This model, in some respects, differs from the other models of supercompilation.

The MRSC Toolkit by Klyuchnikov and Romanenko [23] abstracts away some
aspects of supercompilation, such as the structure of configurations and the
details of the subject language. However, the MRSC Toolkit is a framework for
implementing small-step supercompilers, while our model in Agda [2] formalizes
big-step supercompilation. Besides, the MRSC Toolkit is implemented in Scala,
for which reason it currently provides no means for neither formulating nor
proving theorems about supercompilers implemented with the MRSC Toolkit.

Krustev was the first to formally verify a simple supercompiler by means
of a proof assistant [26]. Unlike the MRSC Toolkit and our model of super-
compilation, Krustev deals with a specific supercompiler for a concrete subject
language. (Note, however, that also the subject language is simple, it is still
Turing complete.)

In another paper Krustev presents a framework for building formally verifi-
able supercompilers [27]. It is similar to the MRSC in that it abstracts away some
details of supercompilation, such as the subject language and the structure of

Staged Multi-Result Supercompilation: Filtering by Transformation 75

configurations, providing, unlike the MRSC Toolkit, means for formulating and
proving theorems about supercompilers.

However, in both cases Krustev deals with single-result supercompilation,
while the primary goal of our model of supercompilation is to formalize and
investigate some subtle aspects of multi-result supercompilation.

8 Conclusions

When using supercompilation for problem solving, it seems natural to produce a
collection of residual graphs of configurations by multi-result supercompilation
and then to filter this collection according to some criteria. Unfortunately, this
may lead to combinatorial explosion.

We have suggested the following solution.

– Instead of generating and filtering a collection of residual graphs of configu-
rations, we can produce a compact representation for the collection of graphs
(a "lazy graph"), and then analyze this representation.

– This compact representation can be derived from a (big-step) multi-result
supercompiler in a systematic way by (manually) staging this supercompiler
to represent it as a composition of two stages. At the first stage, some graph-
building operations are delayed to be later performed at the second stage.

– The result produced by the first stage is a "lazy graph", which is, essentially,
a program to be interpreted at the second stage, to actually generate a
collection of residual graphs.

– The key point of our approach is that a number of problems can be solved by
directly analyzing the lazy graphs, rather than by actually generating and
analyzing the collections of graphs they represent.

– In some cases of practical importance, the analysis of a lazy graph can be
performed in linear time.

Acknowledgements

The authors express their gratitude to the participants of the Refal seminar at
Keldysh Institute for useful comments and fruitful discussions.

References

1. Staged multi-result supercompilation: filtering before producing, 2013.
https://github.com/sergei-romanenko/staged-mrsc-agda.

2. The Agda Wiki, 2013.
http://wiki.portal.chalmers.se/agda/.

3. D. Bjørner, M. Broy, and I. V. Pottosin, editors. Perspectives of Systems Informat-
ics, Second International Andrei Ershov Memorial Conference, Akademgorodok,
Novosibirsk, Russia, June 25–28, 1996, volume 1181 of Lecture Notes in Computer
Science. Springer, 1996.

76 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

4. M. Bolingbroke and S. Peyton Jones. Supercompilation by evaluation. In Proceed-
ings of the third ACM Haskell symposium on Haskell, Haskell ’10, pages 135–146,
New York, NY, USA, 2010. ACM.

5. E. Clarke, I. Virbitskaite, and A. Voronkov, editors. Perspectives of Systems In-
formatics, 8th Andrei Ershov Informatics Conference, PSI 2011, Akademgorodok,
Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162 of Lecture Notes in
Computer Science. Springer, 2012.

6. T. Coquand. About Brouwer’s fan theorem. Revue internationale de philosophie,
230:483–489, 2003.

7. S. A. Grechanik. Overgraph representation for multi-result supercompilation. In
Klimov and Romanenko [18], pages 48–65.

8. S. A. Grechanik. Supercompilation by hypergraph transformation. Keldysh Insti-
tute Preprints, (26), 2013.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2013-26.

9. A. V. Klimov. An approach to supercompilation for object-oriented languages: the
Java Supercompiler case study. In Nemytykh [34], pages 43–53.

10. A. V. Klimov. JVer project: Verification of Java programs by the Java Supercom-
piler. http://pat.keldysh.ru/jver/, 2008.

11. A. V. Klimov. A program specialization relation based on supercompilation and
its properties. In Nemytykh [34], pages 54–77.

12. A. V. Klimov. A Java Supercompiler and its application to verification of cache-
coherence protocols. In Pnueli et al. [36], pages 185–192.

13. A. V. Klimov. Multi-result supercompilation in action: Solving coverability prob-
lem for monotonic counter systems by gradual specialization. In International
Workshop on Program Understanding, PU 2011, Novososedovo, Russia, July 2–5,
2011, pages 25–32. Ershov Institute of Informatics Systems, Novosibirsk, 2011.

14. A. V. Klimov. Yet another algorithm for solving coverability problem for monotonic
counter systems. In V. Nepomnyaschy and V. Sokolov, editors, PSSV, pages 59–67.
Yaroslavl State University, 2011.

15. A. V. Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In Clarke et al. [5], pages 193–209.

16. A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Automatic verification
of counter systems via domain-specific multi-result supercompilation. Keldysh In-
stitute Preprints, (19), 2012.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19.

17. A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Implementing a domain-
specific multi-result supercompiler by means of the MRSC toolkit. Keldysh Insti-
tute Preprints, (24), 2012.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24.

18. A. V. Klimov and S. A. Romanenko, editors. Third International Valentin Turchin
Workshop on Metacomputation, Pereslavl-Zalessky, Russia, July 5–9, 2012. Aila-
mazyan University of Pereslavl, Pereslavl-Zalessky, 2012.

19. I. G. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Keldysh Institute
Preprints, (63), 2009.
URL: http://library.keldysh.ru/preprint.asp?id=2009-63.

20. I. G. Klyuchnikov. Supercompiler HOSC: proof of correctness. Keldysh Institute
Preprints, (31), 2010.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2010-31.

21. I. G. Klyuchnikov and S. A. Romanenko. SPSC: a simple supercompiler in scala.
In PU’09 (International Workshop on Program Understanding), 2009.

Staged Multi-Result Supercompilation: Filtering by Transformation 77

22. I. G. Klyuchnikov and S. A. Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Pnueli et al. [36], pages 193–205.

23. I. G. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-result
supercompilers. Keldysh Institute Preprints, (77), 2011.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77.

24. I. G. Klyuchnikov and S. A. Romanenko. Formalizing and implementing multi-
result supercompilation. In Klimov and Romanenko [18], pages 142–164.

25. I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In Clarke et al. [5],
pages 210–226.

26. D. N. Krustev. A simple supercompiler formally verified in Coq. In A. P. Nemy-
tykh, editor, META, pages 102–127. Ailamazyan University of Pereslavl, Pereslavl-
Zalessky, 2010.

27. D. N. Krustev. Towards a framework for building formally verified supercompilers
in Coq. In H.-W. Loidl and R. Peña, editors, Trends in Functional Programming,
volume 7829 of Lecture Notes in Computer Science, pages 133–148. Springer, 2012.

28. A. P. Lisitsa and A. P. Nemytykh. SCP4: Verification of protocols. http://refal.
botik.ru/protocols/.

29. A. P. Lisitsa and A. P. Nemytykh. Verification of MESI cache coherence protocol.
http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html.

30. A. P. Lisitsa and A. P. Nemytykh. Towards verification via supercompilation. In
COMPSAC, pages 9–10. IEEE Computer Society, 2005.

31. A. P. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing (ex-
periments with the SCP4 supercompiler). Programming and Computer Software,
33(1):14–23, 2007.

32. A. P. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via super-
compilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

33. A. P. Nemytykh. The supercompiler SCP4: General structure. In M. Broy and
A. V. Zamulin, editors, PSI, volume 2890 of Lecture Notes in Computer Science,
pages 162–170. Springer, 2003.

34. A. P. Nemytykh, editor. First International Workshop on Metacomputation in Rus-
sia, Pereslavl-Zalessky, Russia, July 2–5, 2008. Ailamazyan University of Pereslavl,
Pereslavl-Zalessky, 2008.

35. A. P. Nemytykh and V. A. Pinchuk. Program transformation with metasystem
transitions: Experiments with a supercompiler. In Bjørner et al. [3], pages 249–
260.

36. A. Pnueli, I. Virbitskaite, and A. Voronkov, editors. Perspectives of Systems Infor-
matics, 7th International Andrei Ershov Memorial Conference, PSI 2009, Akadem-
gorodok, Novosibirsk, Russia, June 15-19, 2009. Revised Papers, volume 5947 of
Lecture Notes in Computer Science. Springer, 2010.

37. M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of positive
information propagation. Master’s thesis, Dept. of Computer Science, University
of Copenhagen, 1994.

38. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

39. M. H. B. Sørensen. Convergence of program transformers in the metric space of
trees. Science of Computer Programming, 37(1-3):163–205, May 2000.

40. W. Taha. A gentle introduction to multi-stage programming. In C. Lengauer, D. S.
Batory, C. Consel, and M. Odersky, editors, Domain-Specific Program Generation,
volume 3016 of Lecture Notes in Computer Science, pages 30–50. Springer, 2003.

78 Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

41. W. Taha. A gentle introduction to multi-stage programming, part II. In R. Läm-
mel, J. Visser, and J. Saraiva, editors, GTTSE, volume 5235 of Lecture Notes in
Computer Science, pages 260–290. Springer, 2007.

42. V. F. Turchin. A supercompiler system based on the language Refal. ACM SIG-
PLAN Not., 14(2):46–54, 1979.

43. V. F. Turchin. The language Refal: The theory of compilation and metasystem
analysis. Technical Report 20, Courant Institute of Mathematical Sciences, New
York University, 1980.

44. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

45. V. F. Turchin. Supercompilation: Techniques and results. In Bjørner et al. [3],
pages 227–248.

46. V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a super-
compiler. In LFP ’82: Proceedings of the 1982 ACM Symposium on LISP and
Functional Programming, August 15-18, 1982, Pittsburgh, PA, USA, pages 47–55.
ACM, 1982.

Supercompiling with Staging

Jun Inoue

INRIA Paris-Rocquencourt
DI École Normale Supérieure, Paris

Jun.Inoue@inria.fr

Abstract. Supercompilation is a powerful program optimization frame-
work which Sørensen et al. showed to subsume, and exceed, partial eval-
uation and deforestation. Its main strength is that it optimizes a condi-
tional branch by assuming the branch’s guard tested true, and that it
can propagate this information to data that are not directly examined
in the guard. We show that both of these features can be mimicked in
multi-stage programming, a code generation framework, by modifying
metadata attached to generated code in-place. This allows for explicit,
programmer-controlled supercompilation with well-defined semantics as
to where, how, and whether a program is optimized. Our results show
that staging can go beyond partial evaluation, with which it originated,
and is also useful for writing libraries in high-level style where failing to
optimize away the overheads is unacceptable.

Keywords: Supercompilation, Multi-Stage Programming, Functional
Programming

1 Introduction

Supercompilation is a powerful metacomputation framework known to subsume
other systems like deforestation and partial evaluation [13]. A key benefit of such
frameworks is to enable the use of abstractions without runtime penalties. For
example, functional programs often split a loop into a function that produces
a stream of items and another function that performs work on each item. This
abstraction with streams greatly improves modularity, at the cost of more al-
location and time spent inspecting the stream. Supercompilation can eliminate
the stream, resolving the tension between abstraction and performance.

Supercompilation is usually studied as a fully automatic optimization, but
this approach has pros and cons. In exchange for the convenience of automation,
programmers lose control over when and how optimization happens, and it can
be difficult to tell whether supercompilation will eliminate a specific abstraction
used in a given source program. This can be problematic if failing to optimize is
unacceptable, as in embedded systems and high-performance computing.

Multi-stage programming (MSP) [17] has evolved as a tool to solve similar
problems with automation in the context of partial evaluation (PE). For instance,
the MSP language MetaOCaml can optimize the power function as follows.

80 Jun Inoue

let rec power n x = if n = 1 then x else x * power (n-1) x

let rec genpow n x = if n = 1 then x else .<.~x * .~(genpow (n-1) x)>.

let rec stpow n = !. .<fun x → .~(genpow n .<x>.)>.

power computes xn, while stpow generates loop-unrolled power for concrete val-
ues of n using MetaOCaml’s three staging constructs. Brackets .<e>. delay the
expression e. An escape .~e must occur inside brackets and instructs e to be
evaluated without delay. The result must be of the form .<e′>., and e′ replaces
.~e. Run !.e compiles and runs the delayed expression returned by e. These
constructs are like LISP’s quasiquote, unquote, and eval but are hygienic, i.e.
preserves static scope [1]. In this example, genpow n .<x>. generates the code
.<x*x*. . .x>. with n copies of x, while stpow places that inside a binder to get
.<fun x → x*x*. . .x>. and compiles it by !. It is evident from the source code
that genpow completely unrolls the recursion seen in power and produces code
containing only *, because that’s the only operation occurring inside brackets.

In this paper, we bring this kind of explicit programmer control to supercom-
pilation through MSP techniques that mimic positive supercompilation [12,13].
Most importantly, we express the introduction and propagation of assumptions
under conditionals that Sørensen et al. [13] identified as the key improvements
that supercompilation makes over PE and deforestation. For example, in

let rec contrived zs =

let f xs ys = match xs with [] → length xs + length ys

| w::ws → length xs

in f zs (1::zs)

and length ws = match ws with [] → 0

| _::ws → 1 + length ws

positive supercompilation optimizes the first branch of the match by assuming
xs = [] and simplifying the branch body, which gives 0 + length ys. Moreover,
noting ys shares a substructure with xs, it propagates the assumption xs = []

to ys = [1], optimizing the whole branch to just 1. By pattern-matching on xs,
we learn something about ys, and the supercompiler tracks this knowledge.

In our technique of delimited assumptions, we manipulate not raw code values
like .<x>. in the power example, but a wrapper that attaches information about
the value x must have. We update this metadata when we generate a branch of
a conditional to reflect any new assumptions. We modify the metadata in place
to propagate the change to all copies of the data. This modification is undone
by a dynamic wind when that branch is left, giving the assumption a (dynamic)
scope delimited by the conditional. We show in this paper how this technique,
combined with auxiliary techniques for ensuring termination of the generator,
can achieve a great deal of the effects of supercompilation.

1.1 Contributions

We will use the contrived function above as a running example to illustrate the
main techniques. Specifically, after reviewing in more detail how the positive
supercompiler works (Section 2):

Supercompiling with Staging 81

– We introduce the technique of delimited assumptions, which combines par-
tially static data [11] with judicious uses of mutation to achieve the intro-
duction and propagation of assumptions explained above (Section 3).

– We show memoization techniques for ensuring termination of the generator,
explaining unique challenges posed by supercompilation (Section 4). Briefly,
conditionals are converted to functions and invoked whenever a conditional
of the same form is encountered, where the criterion for sameness must be
modeled after α-invariant folding.

– We show that the techniques in this paper are sufficient to specialize a näıve
string search algorithm to the Knuth-Morris-Pratt (KMP) algorithm [8],
which is a staple test case for supercompilation (Section 5). This example
motivates a technique called delimited aliasing which ensures static informa-
tion is properly retained during memoization.

A heavily commented MetaOCaml source file containing all nontrivial code of
this paper is available from the author’s homepage. However, note that some
parts of the code were shortened or omitted due to space limitations.

2 Background: Supercompilation

In this section we briefly review Sørensen et al.’s positive supercompiler [13]. We
use the contrived function from the introduction as a running example. When
asked to optimize the contrived function, the supercompiler starts a process
called driving on the body of the function, reducing it as much as possible:

let f xs ys = match xs with [] → length xs + length ys

| w::ws → length xs

in f zs (1::zs)

⇓
match zs with [] → length zs + length (1::zs)

| w::ws → length zs

where ⇓ denotes reduction – note that an open term is being reduced, with zs

free. Now the code is at a pattern-match that cannot be resolved statically. In
that case, driving replaces the scrutinee in each branch with the corresponding
pattern:

match zs with [] → length [] + length (1::[])

| w::ws → length (w::ws)

Note that zs is replaced by [] in the first branch but by w::ws in the second.

This substitution implements the introduction of assumptions mentioned in
the introduction: the supercompiler rewrites each branch with the knowledge
that the scrutinee must have a particular form in order for that branch to be
entered. Furthermore, both calls to length in the first branch benefit by intro-
ducing the assumption zs = []. In the original source program, the scrutinee
was xs, whereas the second call’s argument was ys; the β substitution during

82 Jun Inoue

the reduction step (shown as ⇓ above) has exposed the sharing of the substruc-
ture zs in these two variables, so that the assumption introduced on (what used
to be) xs propagates to (what used to be) ys. Put another way:

– Assumptions are introduced by replacing the scrutinee with patterns.
– Assumptions are propagated by sharing substructures.

The main idea behind delimited assumptions is that we can imitate both of these
mechanisms by mutating metadata on a delayed variable.

After assumptions are introduced and propagated, the rewritten branch bod-
ies are driven separately; however, blindly doing so can lead to non-termination.
For example, driving the second branch by unrolling length gives

length (w::ws)

⇓
match w::ws with [] → 0

| _::ws’ → 1 + length ws’

⇓
1 + length ws

Note the match statement can be resolved statically, so no assumptions are in-
troduced. The supercompiler at this point drives each argument of + separately.
The left operand is in normal form, so it turns to the right operand, length ws.

length ws

⇓
match ws with [] → 0

| _::ws’ → 1 + length ws’

But the second branch is in a form already encountered before, so this unrolling
can go on forever.

To avoid infinite unrolling, the positive supercompiler lambda-lifts and memo-
izes each statically unresolvable match. After introducing assumptions, but before
driving each branch, the supercompiler places the whole match expression in a
new top-level function whose parameters are the free variables of the expression.

let rec newfun xs =

match xs with [] → 0

| _::ws’ → 1 + length ws’

When the supercompiler encounters the same match while driving the branches
of newfun, where two terms are the “same” iff lambda-lifting them gives α-
equivalent functions, then it emits a call to newfun instead of driving the same
term again. For example, driving the length ws’ in the second branch of the
match in newfun replaces it by newfun ws’.

Put together, the supercompiler compiles the contrived function into

let rec contrived zs =

match zs with [] → 0 + (1 + 0)

| w::ws → 1 + length ws

and length ws = match ws with [] → 0

| _::ws → 1 + length ws

Supercompiling with Staging 83

type (’s,’d) sd =

{ mutable dynamic : ’d code;

mutable static : ’s option; }

type (’s,’d) ps_cell =

| Nil

| Cons of (’s,’d) sd * (’s,’d) psl

and (’s,’d) psl =

((’s,’d) ps_cell, ’d list) sd

(∗unknown : ’d code → (’s,’d) sd∗)
let unknown x =

{ dynamic = x; static = None }

(∗forget : (’a,’b) sd → ’b code∗)
let forget x = x.dynamic

(∗ assuming eq : (’a, ’b) sd → ’a
→ (unit → ’c) → ’c ∗)

let assuming_eq x v thunk =

let saved = x.static in

try x.static <- Some v;

let ret = thunk () in

x.static <- saved; ret

with e → x.static <- saved;

raise e

(∗dfun : ((’a, ’b) sd → ’c code)
→ (’b → ’c) code∗)

let dfun f =

.<fun x → .~(f (unknown .<x>.))>.

(∗ match ls :
((’a,’b) ps cell,’b list) sd
→ (unit → ’c code)
→ ((’a,’b) sd → (’a,’b) psl
→ ’c code)

→ ’c code
∗)
let match_ls ls for_nil for_cons =

match ls.static with

| Some Nil → for_nil ()

| Some (Cons (x,xs)) →
for_cons x xs

| None →
.<match .~(forget ls) with

| [] → .~(assuming_eq ls Nil

for_nil)

| x::xs →
.~(let x = unknown .<x>.

and xs = unknown .<xs>.

in assuming_eq

ls (Cons (x,xs))

(fun () →
for_cons x xs))>.

Fig. 1: Data types and functions implementing delimited assumptions.

In general, driving stops when the term under consideration reaches either a
normal form or a memoized form. This heuristic is called α-invariant folding.
Stronger termination heuristics are possible and implemented usually as gener-
alization, but we will not deal with that aspect in this paper.

3 Delimited Assumptions

Driving follows the execution of its input program with three mechanisms: re-
duction of open terms, introduction of assumptions, and propagation of assump-
tions. As seen in the power example from the introduction, reduction of open
terms is handled very naturally with MSP, as delayed variables can be manipu-
lated like values and injected into generated code. Effectively, inserting brackets
and escapes to force evaluation under binders corresponds to implementing the
reduction part of driving. The trickier part is the handling of assumptions.

Figure 1 shows types and functions used to handle assumptions with MSP.
Whereas the power example directly manipulated raw code values of the form
.<x>., the delimited assumption technique uses static-dynamic values, of type

84 Jun Inoue

sd. Here, “dynamic” means delayed by brackets, and “static” means not delayed.
The sd type carries a dynamic value .<x>. and a static description of x’s dynamic
value (i.e. of the value x will have when the generated code is run). The type of x’s
value is ’d, and the type of the static description is ’s. Static-dynamic values are
created by unknown, which attaches void static information to a dynamic value,
and cast back to a dynamic value with forget, which discards static information.
An example is seen in dfun, which generates a dynamic fun, wraps the parameter
in unknown, and passes that to a callback to generate the body.

Static knowledge is often partial. For example, we might know that a dynamic
list xs must be a cons cell x::xs’ but not the value of x or whether xs’ is also
a cons cell. We need to mix in sd throughout data structures to represent such
partial knowledge, which for the list type gives the partially static list type, psl.
The ps_cell type encodes one cell worth of static information: empty or not,
and if nonempty, the static-dynamic representations of the head and tail. The
psl type is a static-dynamic type whose dynamic component is a list and whose
static component is ps_cell.

The static information is manipulated during a call to match_ls, which looks
deliberately like a match on a list:

match_ls xs (fun () → .<"empty">.) (fun x xs’ → .<"nonempty">)

Conceptually, this function is a dynamic match whose branches are generated
by the two callbacks, but it avoids generating a match at all if the static infor-
mation on xs tells us the outcome, e.g. whether the list is empty or a cons cell.
This optimization is implemented in the first half of match_ls – if static infor-
mation is available, match_ls calls only one of the callbacks. However, if static
information is unavailable, match_ls generates a dynamic match, then wraps pat-
tern variables (if any) in sd and invokes the callbacks. Moreover, the scrutinee’s
static information is destructively updated to reflect which branch was taken:
to Nil in the [] branch, and to Cons in the x::xs branch. This update is undone
when the callback returns, so the assumption’s lifetime is delimited by the match

branch in which it was introduced – hence the name delimited assumption. This
modification and restoration of static information is done in assuming_eq.

Note that the update by assuming_eq is done by mutation. By destructively
updating static information, all copies of the data see the update. For example,
the contrived function in the introduction can be staged as follows.

let rec gen_contrived () = dfun (fun zs →
let f xs ys = match_ls xs

(fun () → .<.~(gen_len xs) + .~(gen_len ys)>.)

(fun _ ws → .<(∗ discussed later ∗)>.)
in f zs (cons (known 1 .<1>.) zs)))

and gen_len ws = match_ls ws (fun () → .<0>.)

(fun _ ws → .<1 + .~(gen_len ws)>.)

Basically, we just replaced fun by dfun and match by match_ls. The dfun wraps
the generated parameter in void static information, so zs.static = None and
zs.dynamic = .<v_zs>. for some (dynamically bound) variable. The cons oper-

Supercompiling with Staging 85

ator is just :: for partially static lists, and known creates sd with the specified
static information (definitions omitted), so when f is entered, we have1

zs = { dynamic = .<v_zs>.; static = None }

xs == zs (∗ NB: physical equality ∗)
ys = { dynamic = .<1::v_zs>.; static = Cons (1, zs) }

representing the fact that we have no knowledge of the dynamic value of zs while
we do know xs = zs and ys = 1::zs. Most importantly, ys shares the zs node
with xs, so that any changes to zs are visible from both xs and ys. When the
match_ls in f introduces the assumption xs = [] by modifying xs, that change
also happens on zs (because they’re physically equal), and this change is visible
from ys. After introducing the assumption, the data look like

zs = { dynamic = .<zs’>.; static = Some Nil }

xs == zs (∗ NB: physical equality ∗)
ys = { dynamic = .<1::zs’>.; static = Cons (1, zs) }

representing the updated, local knowledge zs = [] and xs = [] and ys = [1],
as desired. Subsequent match_ls on ys can avoid generating any dynamic match

using this static information.
Overall, the generated code is

.<fun zs → match zs with [] → 0 + (1 + 0)

| x::xs → (∗ discussed later ∗)>.

Both calls to length have been completely optimized away. This would not have
happened if the assumption about xs didn’t propagate to ys.

Thus, the techniques in this section suffice to imitate driving, including open-
term reduction, introduction of assumptions, and propagation to all copies. We
should note that not all open-term reductions are easily simulated this way. For
example, in the f function above, (+) is hard-coded inside brackets, so it’s not
optimized away, whereas an automated supercompiler might reduce it as well.
For this example, if we really need to optimize that addition, we can still do so
by making the returned integer partially static. Such a workaround may or may
not be so obvious in general; however, experience with more traditional, PE-like
uses of MSP suggests that this is not a significant issue.

4 Ensuring Termination

The previous section deliberately ignored a part of contrived that involves a
termination issue. In this section, we explain how to simulate α-invariant folding
to ensure termination. The most obvious way to fill in the expression marked
(∗discussed later ∗) in the staged code above is to put gen_len xs there, following
the structure of the original, unstaged code. Alas, this call never finishes. The
input xs is not completely statically known, so gen_len eventually runs out of

1 Pedantically, the first argument of the Cons in ys.static should be another sd, but
we simply write the static representation 1 for the sake of conciseness.

86 Jun Inoue

(∗ State monad. ∗)
type (’a,’st) monad = ’st → (’a * ’st)

(∗ memoize : ’key
→ (’a code, (’key,’a code) table) monad
→ (’a code → (’b code, (’key,’a code) table) monad)
→ (’b code, (’key,’a code) table) monad ∗)

let memoize key fcn call =

bind get (fun table →
match lookup key table with

| Some f → call f

| None → bind get (fun table →
ret .<let rec f = .~(run_monad fcn (add key .<f>. table))

in .~(run_monad (call .<f>.) table)>.))

(∗ Fix the table type for brevity. ∗)
type ’a table_monad =

(’a, ((int, int) psl, (int list → int) code) table) monad

(∗ gen contrived : unit → (int list → int) code table monad ∗)
let rec gen_contrived () = dfun (fun zs →
let f xs ys = match_ls xs

(fun () → gen_len xs +! gen_len ys)

(fun _ ws → gen_len xs)

in f zs (cons (known 1 .<1>.) zs))

(∗ gen len : (int,int) psl → (int code) table monad ∗)
and gen_len ws =

memoize (freeze ws)

(dfun (fun ws’ → alias ws (forget ws’) (fun () →
match_ls ws

(fun () → ret .<0>.)

(fun _ ws → ret .<1>. +! gen_len ws))))

(fun f → return .<.~f .~(forget ws)>.)

Fig. 2: Staged contrived function with memoization.

static information to act on. This means the match_ls in gen_len generates a
dynamic match, whose cons-branch is generated by creating a fresh ws, again
with no static information. This is then passed recursively to gen_len, which
repeats the same process.

This situation is analogous to driving without folding. With match_ls, we
are forcing the evaluation of branch bodies of statically unresolvable pattern-
matches by making deeper and deeper assumptions about the input list, but
there is no bound on the depth of this assumption. This leads to non-termination,
because unlike the driving process described in Section 2, the code shown here
doesn’t generate a (recursive) function that can be reused later when an identi-
cal match_ls is reached. Generating and memoizing those functions is an integral

Supercompiling with Staging 87

part of the positive supercompiler’s termination heuristic, and we need to sim-
ulate this in MSP as well.

Figure 2 shows a terminating generator which memoizes the pattern-match
in gen_len, keyed with the scrutinee (since that’s the only free variable in the
match statement). Following Swadi et al. [15], we thread the memo table by
a state monad; ret, bind, and get are the usual state monad operations, and
match_ls and dfun are updated to work inside the monad. Similarly, (+!) gen-
erates a dynamic (+) inside the monad. Other than that, the only change is
the addition of a call to memoize, which takes a key, a monadic action fcn that
generates a function, and call which maps a dynamic function to some code
invoking that function. If key is not in the table, memoize dynamically binds the
function returned by fcn and generates a call to it with call. The fcn is run on
a state extended with the mapping key 7→ .<f>., where f is the newly generated
function. If memoize is invoked again with the same key while fcn generates the
body of f, then only call is invoked, without generating a new function. Thus,
the code in Figure 2 terminates and generates

.<fun zs → match zs with [] → 0 + (1 + 0)

| w::ws → 1 +

(let rec len ws =

match ws with [] → 0

| _::ws’ → 1 + len ws’

in len ws)>.

This memoization scheme has several subtleties, two of which are explained
here, while the last one is explained in the next section using the more so-
phisticated KMP example. The first subtlety is that memoization keys must be
deep-copied before inserting into the table, because subsequent introduction of
assumptions can change their static information. The freeze function in Figure 2
performs this deep copy. The second subtlety is that key comparison cannot be
simple equality. For example, if gen_len is called on the partially static datum

xs = { dynamic = .<v_xs>.; static = None }

for some dynamic variable v_xs bound on the caller’s side, then a new entry is
created in the memo table with xs as the key (assuming it’s not already there).
However, the second branch of match_ls calls gen_len on

ws = { dynamic = .<v_ws>.; static = None }

where v_ws is the symbol freshly generated by match_ls. If these keys were com-
pared with (=), then the lookup would fail, resulting in non-termination.

This shows that key comparison should ignore differences in names of dy-
namic variables. However, it should not ignore differences in sharing. Although
not an issue for gen_len, if a function with two arguments xs and ys introduces
assumptions on xs and then pattern-match on ys, then a memo entry created
when xs and ys are physically equal must not be used at a call site where they
are not equal. In general, the keys must be compared under DAG isomorphism
– they are equal iff they have the same shape (same number of cons cells with

88 Jun Inoue

the same heads, a.k.a. car’s, linked together in the same manner), but not the
same names on the leaves where static information is None.

This keying discipline is not so mysterious if we consider the connection to
α-invariant folding in positive supercompilation. A static-dynamic datum with
void static information is like a variable in the object term of supercompilation,
whereas a static-dynamic datum with, say Cons(1,xs) as static information is like
an open object term 1::xs in supercompilation. The function generated during
memoization is the lambda-lifting of the match that is memoized, and the memo
keys are the collection of all partially static data manipulated inside that match.
Hence, if a match statement on a particular source location is executed multiple
times, each execution instance is uniquely identified by the key. The lambda-
lifted function f is reusable precisely when supercompiling a term whose lambda-
lifting is α-equivalent to f, which is necessary and sufficient for the lookup key
to be graph-isomorphic to the key found in the table.

5 Case Study: KMP

In this section, we show that our MSP techniques suffice to pass the “KMP
test” for supercompilation [13]. In this test case, we explain the final subtlety in
implementing α-invariant folding with memoization, which motivates one final
technique which we call delimited aliasing.

Figure 3a shows a function search that tests if a pattern string p occurs in a
subject string s.2 It checks if p is a prefix of s by character-wise comparison, and
upon a mismatch, drops the head of s and starts over. If p,s have lengths m,n,
respectively, this takes O(mn) comparisons. The objective is, given a concrete
pattern, to generate the efficient KMP algorithm in Figure 3c which performs
only O(m+ n) comparisons (not counting generation cost).

Specializing search to a fixed pattern "aab" with PE gives more or less Fig-
ure 3b, where the []-cases of matches are omitted due to space limitations. The
matches on the pattern are statically resolved, but the subject is still rewound
to the beginning upon a mismatch, resulting in O(mn) comparisons. We can
do better. If the third character mismatched, the subject must start with "aa",
so we know the first comparison of the next round will return true. We can
therefore skip that comparison. Eliminating such redundant comparisons gives
the KMP algorithm in Figure 3c. Note the failing branch of the comparison in
kmp_b jumps to kmp_ab instead of kmp_aab.

This optimization happens by noting static information learned about os

due to pattern matches and comparisons on ss. It’s by following the match ss

and if s = ’a’ that we learn (or assume) that the subject starts with "aa",
and os is never inspected; nonetheless, this information should propagate to
os and be used to skip (or statically perform) redundant comparisons. This is
just what positive supercompilation does, as do our MSP techniques. Figure 3d
demonstrates a staged version of the matcher. It is fairly straightforward, with

2 Strings are represented as char list rather than string, but for brevity we write
literals "like this" where convenient.

Supercompiling with Staging 89

let rec search p s = loop p s p s

and loop pp ss op os =

match pp with

| [] → true

| p::pp’ →
match ss with

| [] → false

| s::ss’ →
if s = p

then loop pp’ ss’ op os

else next op os

and next op = function

| [] → false

| s::ss → loop op ss op ss

(∗ Mnemonics for variable names:
p, pp −− Pattern to search for
s, ss −− Subject to search over
op −− Original Pattern
os −− Original String ∗)

(a) Generic version.

let rec naive_aab ss = aab ss ss

and aab ss os =

match ss with

| x::xs →
if x = ’a’ then ab xs os

else next os

and ab ss os =

match ss with

| x::xs →
if x = ’a’ then b xs os

else next os

and b ss os =

match ss with

| x::xs →
if x = ’b’ then true

else next os

and next = function

| _::xs → aab xs xs

(b) Näıvely specialized to “aab”.

let rec kmp_aab = function

| x::xs →
if x = ’a’ then kmp_ab xs

else kmp_aab xs

and kmp_ab = function

| x::xs →
if x = ’a’ then kmp_b xs

else kmp_aab xs

and kmp_b = function

| x::xs →
if x = ’b’ then true

else if x = ’a’ then kmp_b xs

else kmp_ab xs

(c) Hand-written KMP for “aab” (split in two columns).

let rec loop pp ss op os =

match pp with

| p::pp’ →
memoize (freeze (pp,ss,op,os))

(dfun (fun ss’ → alias ss (forget ss’) (fun () →
match_ls ss (fun () → ret .<false>.)

(fun s ss →
ifeq s (known p .<p>.)

(fun () → loop pp’ ss op os)

(fun () → next op os)))))

(fun f → ret .<.~f .~(forget ss)>.)

and next op os () = match_ls os (fun () → ret .<false>.)

(fun s ss → loop op ss op ss ())

(d) Staged string search with memoization (one column).

Fig. 3: String matcher. Suffixes in specializations indicate remaining pattern.

90 Jun Inoue

match replaced by match_ls and if s = c replaced by ifeq, a combinator similar
to match_ls but generating equality tests with constants.

The one aspect in which this example differs significantly from contrived is
the use of the combinator

alias : (’a,’b) sd → ’b code → (unit → (’c,’d) monad) → (’c,’d) monad

which is almost the same as assuming_eq but updates the dynamic value instead
of the static information. For example, if we reach the memoize in Figure 3d when

pp = "aab"

op = "aab"

ss = { dynamic = .<v_ss>.; static = None }

os = { dynamic = .<v_os>.; static = Some (’a’, ss) }

then memoize calls back the generator of the memoized body (i.e. the part that
starts out with dfun), and the dfun creates a new static-dynamic value

ss’ = { dynamic = .<v_ss’>.; static = None }

Then alias ss (forget ss’) modifies the dynamic variable associated to ss to
make it an alias for ss’, hence

ss = { dynamic = .<v_ss’>.; static = None }

All other static-dynamic values remain unchanged. Just like assuming_eq, this
mutation is undone when the thunk (the last argument to alias) returns.

The reason we need this is because, by making v_ss an argument to the
function generated by memoize, we’re effectively renaming the dynamic variable
v_ss. The whole point of generating a function is to have its body process the
parameter v_ss’ instead of v_ss, so that this body becomes reusable. However,
in the case of KMP, the body must also process os, which would still refer to
v_ss instead of v_ss’; mutating the ss structure ensures that both os and ss are
updated to point to v_ss’.

This scheme once again corresponds to α-invariant folding, where free vari-
ables are captured and consistently renamed. Mutating the dynamic variables
on leaf nodes of static-dynamic values corresponds to renaming the dynamic
variable associated with that value across the board.

It should be noted that to be faithful to the α-invariant folding heuristic,
alias should only be used on leaf nodes, whose static information is None. This
ensures maximum retention of static information, because alias’ed nodes must
have void static information (since the new dynamic variables have no static
information). Thus, a combinator would be helpful that traverses static-dynamic
data and collects such nodes, generating a function with as many arguments as
needed. This will be fairly tricky to type in (Meta)OCaml, since we need to
traverse arbitrary data structures while managing a heterogeneous collection
of dynamic variables to eliminate duplicates. We leave the pursuit of such a
combinator for another occasion.

With these mechanisms in hand, the generator in Figure 3d produces more
or less the KMP code in Figure 3c, with two minor differences. Firstly, as posi-

Supercompiling with Staging 91

tive supercompilation tracks equalities but not disequalities, we have redundant
comparisons of the form

if x = ’a’ then ...

else if x = ’a’ then ... else ...

This can be eliminated by maintaining richer static information. For example,
a dynamic value can be tagged with the set of values it can have, rather than a
single value. The other difference is that the generated code nests let recs like

let rec f1 =

let rec f2 = bar

in baz

in foo

instead of having a single, flat let rec. Hence, only functions generated in the
direct ancestors of a memoize call can be reused, which is both a good safety pre-
caution and a limitation. Reusing functions from a different conditional branch
runs the risk of invoking code that relies on assumptions valid only in that
branch, but if used properly it can reduce generated code size. Current MetaO-
Caml provides no way to generate let rec with a variable number of bindings,
but a new primitive allowing that is expected in a future release.3 It would be
interesting to see if they enable notable improvements.

6 Related Work

Supercompilation was devised by Turchin for Refal [19] and later adapted to
more standard functional languages by Glück and Klimov [3]. Sørensen et al.
placed this on the same theoretical footing as PE, deforestation, and generalized
partial computation (GPC), and showed that supercompilation subsumes PE
and deforestation [13]. We have drawn heavily from this work: [13] effectively
identified all the key ingredients for supercompilation, in terms that are trans-
ferable to MSP. Supercompilation has been extended by distillation [4], but it
remains unclear what the differences are, in terms that can be mapped to MSP.

GPC [2,18] is an extension of PE that uses a theorem prover to manage static
information. While the use of a theorem prover makes it harder to predict how it
performs on any given task, we remark that the delimited assumption technique
can be used to simulate GPC as well, by simply taking the static information to
be variables in the theorem prover. Compared to GPC, however, our techniques
perform the very stylized information propagation of supercompilation, which
behaves more predictably than if the bookkeeping is delegated to a black-box
solver. In this way, our techniques might be useful to lighten the load on the
prover.

MSP was originally a notation for PE [10] but was later developed into a
programming language feature by Taha and Sheard [17]. Its main advantages are
the existence of a well-behaved metatheory [5] and type systems that make strong

3 Private communication with the maintainer.

92 Jun Inoue

guarantees about generated code [6, 16, 20]. MetaOCaml statically prevents the
construction of ill-formed or ill-typed code values, with the one exception that
effects can cause scope extrusion, where a dynamic variable is floated out of its
scope. Much effort has been expended on catching this problem early, resulting in
static type systems [6,20] and dynamic checks [7], the latter of which MetaOCaml
already implements. The present paper adds to the motivation for these efforts
by offering a new, important use for effectful MSP.

Partially static data types were known in PE circles starting perhaps with
Mogensen [9], but Sheard and Diatchki [11] seem to be the first to use it as
a staging technique. However, they duplicated constructors instead of pairing
dynamic values with optional static information, which made their code generally
more verbose than ours. The pairing technique itself appears in earlier PE works,
for example [14]. The observation that mutating components of these pairs can
simulate supercompilation appears to be new.

7 Conclusion

We showed that MSP can achieve a good deal of the effects of positive supercom-
pilation. The central idea is to update the static portion of partially static data
structures upon entering a dynamic conditional, and to do this with mutation.
This arrangement ensures that the assumption is propagated to all copies of the
data, allowing smart handling of nonlinear code. As an auxiliary technique, a
fairly nonstandard memoization scheme may be required to ensure termination,
namely comparing partially static data with graph isomorphism. Taken together,
these techniques can specialize a näıve string matcher to a KMP matcher.

The techniques in this paper should be thought of as low-level groundwork for
realizing supercompilation by staging. It is fairly technical and we can’t expect
most MetaOCaml programmers to be apply this easily, without making mistakes.
A well-designed combinator library should be able to alleviate this problem.
An important goal for such a library is to offer a richer memoize combinator
that collects leaf nodes from its key and generates a function with as many
parameters as are needed, performing delimited aliasing as well. This would
make the techniques much more straightforward to understand.

Finally, this paper’s purpose is to demonstrate techniques that are useful in
expressing supercompilation-like optimizations in MSP, and not to lay down a
formal analysis. We did not attempt to define precisely what class of programs
can be supercompiled, but as mentioned earlier, not all driving trees are naturally
expressed with MSP. It would be interesting to see what kinds of driving trees
are beyond MSP in its current form (if any).

Acknowledgment. We thank Oleg Kiselyov for his insightful comments and
encouragement to publish this work.

Supercompiling with Staging 93

References

1. Dybvig, R.K.: Writing hygienic macros in scheme with syntax-case. Tech. Rep.
TR356, Indiana University Computer Science Department (1992)

2. Futamura, Y.: Program evaluation and generalized partial computation. In: FGCS.
pp. 685–692 (1988)

3. Glück, R., Klimov, A.: Occam’s razor in metacomputation: the notion of a perfect
process tree. In: Static Analysis, Lecture Notes in Computer Science, vol. 724, pp.
112–123. Springer Berlin Heidelberg (1993)

4. Hamilton, G.W.: Distillation: Extracting the essence of programs. In: PEPM. pp.
61–70. ACM, New York, NY, USA (2007)

5. Inoue, J., Taha, W.: Reasoning about multi-stage programs. In: ESOP. pp. 357–376
(2012)

6. Kameyama, Y., Kiselyov, O., Shan, C.c.: Combinators for impure yet hygienic code
generation. In: PEPM. pp. 3–14 (2014)

7. Kiselyov, O.: The design and implementation of BER MetaOCaml: System de-
scription. In: FLOPS, to appear (2014)

8. Knuth, D.E., Morris, J., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal of Computing 6(2), 323–350 (1977)

9. Mogensen, T.Æ.: Efficient self-interpretations in lambda calculus. Journal of Func-
tional Programming 2(3), 345–363 (1992)

10. Nielson, F., Nielson, H.R.: Two-level functional languages. Cambridge University
Press (1992)

11. Sheard, T., Diatchki, I.S.: Staging algebraic datatypes. Unpublished manuscript,
http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps

12. Sørensen, M.H., Glück, R.: Introduction to supercompilation. In: Partial Evalua-
tion - Practice and Theory, DIKU 1998 International Summer School. pp. 246–270
(1999)

13. Sørensen, M.H., Glück, R., Jones, N.D.: Towards unifying partial evaluation, de-
forestation, supercompilation, and GPC. In: ESOP. pp. 485–500 (1994)

14. Sperber, M.: Self-applicable online partial evaluation. In: Partial Evaluation,
LNCS, vol. 1110, pp. 465–480. Springer (1996)

15. Swadi, K., Taha, W., Kiselyov, O., Pašalić, E.: A monadic approach for avoiding
code duplication when staging memoized functions. In: PEPM. pp. 160–169. ACM
(2006)

16. Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL. pp. 26–37. ACM
(2003)

17. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
PEPM. pp. 203–217. ACM (1997)

18. Takano, A.: Generalized partial computation using disunification to solve con-
straints. In: CTRS. pp. 424–428 (1993)

19. Turchin, V.: A supercompiler system based on the language Refal. SIGPLAN No-
tices 14(2), 46–54 (1979)

20. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java
multi-stage programming using weak separability. In: PLDI (2010)

Towards Understanding Superlinear Speedup by
Distillation

Neil D. Jones G.W. Hamilton

Computer Science Department School of Computing
University of Copenhagen Dublin City University
2100 Copenhagen, Denmark Dublin 9, Ireland
neil@diku.dk hamilton@computing.dcu.ie

Abstract. Distillation is a fully automatic program transformation that
can yield superlinear program speedups. Bisimulation is a key to the
proof that distillation is correct, i.e., preserves semantics. Bisimulation
normally requires explicit definition of equivalent states. However distil-
lation can produce complexity reductions and thus fewer residual states.
This often makes 1-1 relations between program states of original and
transformed programs hard or impossible to see. The correctness proof
of distillation, since based on observational equivalence, is insensitive
to program running times, and does not help to explain how superlin-
ear speedups can occur. This paper’s approach to better understanding
cause-and-effect in distillation is to simplify distillation as much as pos-
sible, while maintaining its capacity for superlinear speedups. We show
how distillation can give superlinear speedups on some “old chestnut”
programs well-known from the early program transformation literature:
naive reverse, factorial sum, Fibonacci, and palindrome detection. We
describe current work on such questions, partly theoretical and partly
computer experiments. Furthermore, we show using complexity-theoretic
tools that a sizable class of exponential-time programs can be converted
into second-order polynomial-time equivalents. The idea is to trade time
for space, in effect replacing cons or a Turing machine tape by first-order
functions as arguments in a cons-free program. Finally, we conjecture
that distillation can realise these superlinear speedup transformations in
general.

1 Introduction

Distillation, supercompilation, and partial evaluation are automatic program
transformations (see [11–13, 21–23]). The main goal of all three is to transform
a program into an improved program. Partial evaluation has been fairly well
automated [13]. A breakthrough occurred when the Futamura projections (Fu-
tamura, Ershov [7, 8]) were realised in practice: generating a compiler from an
interpreter by self-applying a partial evaluator (see [13] for details and history).
Furthermore, optimal specialisation has been achieved: partial evaluation can re-
move all interpretation overhead when specialising an interpreter to its program
input.

Towards Understanding Superlinear Speedup by Distillation 95

In some respects supercompilation, deforestation and distillation (Turchin,
Sørensen, Wadler, Hamilton [10–13,21,23,24]) can make deeper transformations
on program control structure. A well-known example is that deforestation can
transform a multipass program into a single pass algorithm [23,24], a feat beyond
the reach of current partial evaluators.

1.1 Goal: extend automatic superlinear program speedup

Program optimisations by hand (Burstall-Darlington and many others [1, 3])
sometimes yield superlinear program speedups. Transformation can make sub-
stantial improvements, for instance changing a program running in time Opn2q or
even Op2nq into one running in time Opnq. Familiar examples include naive pro-
grams for list reversal, sum of factorials, and the Fibonacci function. A goal for
many years now has been how to obtain such effects by well-automated methods.

Classical compiler optimisations are a model of automation, though the pro-
gram speedups they give are limited. Many have been proven correct using bisim-
ulation, e.g., [17] by Lacey et al. This has led to some practical automation of
compiler correctness proofs, e.g., [18] by Lerner et al, and successors.

However it has been proven (see [13,21]) that partial evaluation, deforestation
and supercompilation (as well as most classical compiler optimisations) are all
limited to at most program speedups by linear constant factors. One reason for
such limited optimisation speedups is that the bisimulations of [17] all involve
one-to-one relations between the control points of the original program and the
compiler-optimised program.

In contrast, distillation [10, 11]) can yield superlinear asymptotic speedups:
this refinement of supercompilation can sometimes transform a program into a
semantically equivalent but asymptotically faster equivalent.

1.2 Bisimulation and program transformation.

Correctness of transformation can be proven using bisimulation [11, 12, 17] to
relate computations by the original and the transformed programs. A question:

How can a program running in time Opn2q (or even time Op2nq) be
bisimilar to a program running in time Opnq?

This puzzling question was the starting point of this work. It was clear at once
that 1-1 relations between program control points would not suffice to explain
the phenomenon. A challenge to overcome: the system structure and techniques
used in distillation as in [10–12] are complex, and hard to reason about globally.

This paper’s approach to better understanding cause-and-effect in distillation
is to simplify distillation as much as possible, while maintaining its capacity for
superlinear speedups. We will describe current work on such questions, partly
theoretical and partly computer experiments.

96 Neil D. Jones, G.W. Hamilton

2 A language, observational equivalence, and labeled
transition systems

Our approach is to simplify the general distillation techniques of [10–12], so
its essence can be seen in a more limited context, to see what is happening
abstractly. A clearer understanding of cause-and-effect could show how auto-
matically to achieve superlinear speedup on a wider range of programs.

A longer-term goal is to apply distillation techniques to intermediate program
representations in a compiler, where programs are call-by-value and imperative,
i.e., tail-recursive. Related: Debois applies partial evaluation to realise some op-
timisations of intermediate program representations in a compiler [6]; however,
superlinear speedup is beyond the current state of the art.

2.1 Source language syntax

Data: let Σ be an uninterpreted signature for constructors, and let TΣ be the set
of all well-formed trees overΣ, finite or infinite. Our examples use as constructors
0-ary 0, unary 1� (successor), and binary constructors �, �, ::. The net effect of
a program is to compute a (mathematical, partial) function f : pTΣq

n á TΣ .
Programs are first-order, built from variables x, constructors c, function calls,

and case. Calls and constructor applications must have all their arguments, i.e.,
full arities. Semantics rrprogss : pTΣq

n á TΣ is call-by-value, omitted for brevity
and because of familiarity.

prog ::� e where ∆
∆ ::� f1 x1 . . . xn � e1 . . . fm x1 . . . xp � em Function definitions
e ::� x | c e1 . . . ek | call | case Expression
call ::� f e1 . . . en Function call
case ::� case e of p1 ñ e1 | . . . | pk ñ ek Case expression
p ::� c x1 . . . xk Case pattern

Free variables are allowed only in the e part of program e where ∆. All other
variables must be bound, either by function parameters or in case patterns.

Definition 1. Denote by timeppxq P NYt8u the running time of program p on
input x, e.g., the number of steps used in computing rrpsspxq.

Goal: automatically transform program p into program p1 such that rrpss � rrp1ss,
but timep1 timep asymptotically, i.e., in the limit as input size grows.

2.2 Observational equivalence and labeled transition systems

Distillation transforms a program p1 into an observationally equivalent program
p2. (Two central references: Milner and Gordon [9, 19].) Observational equiva-
lence implies semantic equivalence, i.e., p1 � p2 implies rrp1ss � rrp2ss.

For definitions of context Crs and evaluation ó appropriate to call-by-value:

Towards Understanding Superlinear Speedup by Distillation 97

Definition 2 (Observational Equivalence). Programs p1, p2 are observa-
tionally equivalent, written p1 � p2, if and only if they have the same termination
behaviour in all closing contexts, i.e., p1 � p2 iff @Crs . Crp1só iff Crp2só.

A limitation of observational equivalence Unfortunately (from this paper’s per-
spective), observational equivalence p � p1 tells us nothing whatsoever about the
comparative running times of the programs involved. In each instance of our
“old chestnut” programs, the original program is observationally equivalent to
its optimised version. Our goal: to clarify the relation between program running
times before and after distillation.

Definition 3 (Labeled transition systems). A labeled transition system (LTS
for short) is a tuple t � pS, s0,Ñ, Actq where S is a set of states. s0 P S is the
root state, 0 is the end-of-action state, and Act is a set of actions α. The tran-
sition relation is Ñ � S � Act � S. Notation: as usual we write a transition
ps, α, s1q in Ñ as s

α
ÝÑ s1.

Definition 4 (Simulation). Binary relation R � S1 � S2 is a simulation of
LTS t1 � pS1, s10,Ñ1, Actq by LTS t2 � pS2, s20,Ñ2, Actq if ps10, s

2
0q P R, and for

every pair ps1, s2q P R and α P Act, s11 P S1:

if s1
α
Ñ s11 then Ds12 P S2 . s2

α
Ñ s12 ^ ps

1
1, s

1
2q P R

Note: t1 and t2 must have the same action sets.

Definition 5 (Bisimulation). A bisimulation � is a binary relation R such
that both R and its inverse R�1 are simulations.

Using an LTS as a program’s abstract syntax. Represent a variable x by a
transition s

x
Ñ 0; represent c e1 . . . ek where c is a constructor by transitions

s
c
Ñ 0, s

#1
ÝÑ s1, . . . , s

#k
ÝÑ sk, where si is the root of the LTS representation

of expression ei; represent case e0 of p1 ñ e1 | . . . | pk ñ ek by transitions

s
case
ÝÑ s0, s

p1ÝÑ s1, . . . , s
pkÝÑ sk; and represent a function call f e1 . . . en by

transitions s
call
ÝÑ s0, s

x1ÝÑ s1, . . . , s
xnÝÑ sn where ∆ contains function definition

f x1 . . . xn � e0.

2.3 Example: “naive reverse” program representation as an LTS

nr input where

nr xs = case xs of

nil => nil

| (:: y ys) => (ap (nr ys) (:: y nil))

ap us vs = case us of

nil => vs

| (:: u us1) => (:: u (ap us1 vs))

98 Neil D. Jones, G.W. Hamilton

2

10

call

1

xs

0

input

3

case

0

xs

4

nil

0

nil

9

y::ys

17

call

11

case

0

us

12

nil

0

vs

16

u::us1

0

::

13

#1

0

u

15

#2

17

call

14

us

0

us1

12

vs

6

us

10

call

5

xs

0

ys

8

vs

0

::

7

#1

0

y

4

#2

Fig. 1. Labelled Transition System for “naive reverse” program

The LTS representation of the naive reverse program is diagrammed in Fig. 1.
This may be easier to follow than an unstructured set of transitions such as

t 2
call
Ñ 10, 2

xs
Ñ 1, 1

input
Ñ 0, 10

case
Ñ 3, 10

nil
Ñ 4, 10

::py,ysq
Ñ 9, 3

xs
Ñ 0, 4

nil
Ñ 0, . . . u

Short form of the LTS for naive reverse (root state 2, nr code start 10, and ap

code start 17). We abbreviate the LTS by omitting end-of-action state 0 and
variable transitions to 0, and bundling together transitions from a single state.

(2 -> (call 10 (input))) ; root = 2: call nr(input)

(10 -> (case xs ((nil).4) ((:: y ys).9))) ; start "nr"

(4 -> (nil))

Towards Understanding Superlinear Speedup by Distillation 99

(9 -> (call 17 (6 8)) ; call ap(nr(ys),...)

(6 -> (call 10 (ys))) ; call nr(ys)

(8 -> (:: y 4))

(17 -> (case us ((nil).vs) ((:: u us1).16)))) ; start "ap"

(16 -> (:: u 15)

(15 -> (call 17 (us1 vs)) ; call ap(ws,vs)

An example of optimisation: The program above runs in time Opn2q. It
can, as is well known, be improved to run in time Opnq. Distillation does this
automatically, yielding the following LTS with root state 3 and rev code start 10.
Effect: the nested loop in nr has been replaced by an accumulating parameter.

; Reverse with an accumulating parameter

(3 -> (call 10 (us 2)))

(2 -> (nil))

(10 -> (case xs ((nil) . acc) ((:: x xs1) . 9)))

(9 -> (call 10 (xs1 8)))

(8 -> (:: x acc))

The distilled version in source language format.

rev us nil where

rev xs acc = case xs of

nil => acc

| (:: x xs1) => rev xs1 (:: x acc)

Are these programs bisimilar? There is no obvious bisimilarity relation be-
tween runtime states of nr and rev, e.g., because of different loop structures and
numbers of variables. In the next section we will see that the result of driving a
distilled program is always bisimilar to the result of driving the original program.

3 Distillation: a simplified version

We now describe (parts of) a cut-down version of distillation. Following the
pattern of Turchin, Sørensen and Hamilton, the first step is driving.

3.1 Driving

Distillation and supercompilation of program p � e where ∆ both begin with
an operation called driving. The result is an LTS Drrpss, usually infinite, with no
function calls and with no free variables other than those of p.

If p is closed, then driving will evaluate it completely, yielding as result an
LTS for the value rrpss. Furthermore, given an LTS for a program p with free
variables, the driver will:

100 Neil D. Jones, G.W. Hamilton

– compute as much as can be seen to be computable;
– expand all function calls and
– yield as output a call-free LTS Drrpss equivalent to program p. (The output

may be infinite if the input program has loops.)

Drrpss will consist entirely of constructors, variables and case expressions whose
tests could not be resolved at driving time. This is a (usually infinite) LTS to
compute the function rrpss (of values of p’s free variables). Another perspective:
Drrpss is essentially a “glorified decision tree” to compute rrpss without calls.
Input is tested and decomposed by case, and output is built by constructors.

Although Drrpss may be infinite it is executable, given initial values of any
free variables. This can be realised in a lazy language, where only a finite portion
of the LTS is looked at in any terminating run.

Correctness of distillation: Theorem 3.10 in [11] shows that for any p, p1,

Drrpss � Drrp1ss implies p � p1

Bottom line: if two programs p, p1 have bisimilar driven versionsDrrpss andDrrp1ss,
then the programs are observationally equivalent.

3.2 A driver for the call-by-value language

The driving algorithm transforms a program into a call-free output LTS (possibly
infinite). It is essentially an extended semantics: an expression evaluator that also
allows free variables in the input (transitions to 0 are generated in the output
LTS for these variables); and case edges that are applied to a non-constructor
value (for each, a residual output LTS case transition is generated).

Relations to the drivers of [10–12]: We do not use silent transitions at all, and so
do not need weak bisimulation. Our LTS states have no internal structure, i.e.,
they are not expressions as in [10–12], and have no syntactic information about
the program from which they were generated, beyond function parameters and
case pattern variables. (Embedding, generalisation, well-quasi-orders etc. are not
discussed here, as this paper’s points can be made without them.)

Another difference: the following constructs its output LTS “one state at a
time”: it explicitly allocates new states for constructors and for case expressions
with unresolvable tests.1

One effect is an “instrumentation”. For instance if p is closed, then the driven
output LTS Drrpss will have one state for every constructor operation performed
while computing rrpss, so Drr ss yields some intensional information about its
program argument’s running time (in spite of Theorem 3.10 0f [11]).

Our language is call-by-value, so environments map variables into states, rather
than into expressions as in [10,11]. Types used in the driver:

1 To avoid non-termination of the program transformer itself, we assume the input
does not contain nonproductive loops such as f 0 where f x � f x.

Towards Understanding Superlinear Speedup by Distillation 101

D : ExpressionÑ LTS
D1 : ExpressionÑ LTS Ñ EnvironmentÑ FcnEnv Ñ LTS
θ P Environment � V ariableá State
∆ P FcnEnv � FunctionNameá V ariable� á Expression

Variable t ranges over LTS’s, and s ranges over states. For brevity, function
environment argument ∆ in the definition of D1 is elided since it is never changed.

1. Drre where ∆ss � D1rress H tu ∆

2. D1rrxss t θ �

"
t with root θx if x P dompθq else

tY ts
x
Ñ 0u where s is a new root state

3. D1rrc e1 . . . ekss t0 θ � let t1 � D1rre1ss t0 θ, . . . , tk � D1rrekss tk�1 θ in

tk Yts
c
Ñ 0, s

#1
ÝÑ rootpt1q, . . . , s

#k
ÝÑ rootptkqu where s is a new root state

4. D1rrf e1 . . . enss t0 θ � let t1 � D1rre1ss t0 θ, . . . , tk � D1rrekss tk�1 θ in
D1rref ss tn tx1 ÞÑ rootpt1q, . . . , xn ÞÑ rootptnqu where ∆ f x1 . . . xn � ef

5. D1rrcase e0 of p1 ñ e1| . . . |pn ñ enss t θ � let t0 � D1rre0ss t θ in

if t0 Q s0
c
Ñ 0, s0

#1
ÝÑ s1, . . . , s0

#k
ÝÑ sk and pi � c x1 . . . xk

then
D1rreiss t0 pθ Y tx1 ÞÑ s1, . . . , xk ÞÑ skuq

else
let t1 � D1rre1ss t0 θ, . . . , tn � D1rrenss tn�1 θ in

tn Y ts
case
ÝÑ rootpt0q, s

p1ÝÑ rootpt1q, . . . , s
pnÝÑ rootptnqu

where s is a new root state

3.3 Distillation’s sequence of transformations

As presented in [11, 12], further analyses and transformations (homeomorphic
embedding, generalisation, folding, etc.) on an infinite Drrpss will yield a finite
transformed program p1. Furthermore, these transformations preserve the prop-
erty of bisimilarity with Drrpss.

The following may help visualise the various stages involved in distillation:

p ÝÑ LTSin ÝÑ LTSdriven ÝÑ LTSout ÝÑ p1

source [parse] (finite, [drive] (infinite, [distill] (finite, [unparse] transformed
program with calls) no calls) with calls) program

Function D is rdrives � rparses.

4 Some speedup principles and examples

4.1 On sources of speedup by distillation

Speedups can be obtained for all our well-known “old chestnut” programs p as
follows (where ps is p applied to known values s of its free variables):

102 Neil D. Jones, G.W. Hamilton

1. Drive: construct LTSdriven � Drrpsss from ps. (This is finite if ps terminates.)
2. Remove “dead code” from LTSdriven: these are any states that are unreach-

able from its root.
3. Merge any bisimilar states in LTSdriven.

Step 2 must be done after constructing LTSdriven. Step 3 can be done either after
or during driving: elide adding a new state and transitions s

a1Ñ s1, . . . , s
anÑ sn

to LTSdriven if an already-existing LTS state has the same transitions.
Two points: first, in traditional compiler construction, dead code elimina-

tion is very familiar; whereas merging bisimilar states is a form of code folding
not often seen (exception: the “rewinding” by Debois [6]). Distillation accom-
plishes the effect of both optimisations, and in some cases more sophisticated
transformations.

Second, the distiller obtains superlinear speedup for all three programs by
introducing accumulating parameters. In some cases, e.g., Fibonacci, the speedup
is comparable to that of “tupling” of Chin et. al. [4,5]; but distillation does not
introduce new constructors.

4.2 Overview of the “old chestnut” examples

Our goal is to relate the efficiencies of a program p and its distilled version
p1. The transformation sequence as in Section 3.3 involves the possibly infinite
object Drrpss � LTSdriven.

The following experimental results get around this problem by computing
Drrpsss for fixed input values s. The idea is to drive a version ps of p applied to
known values s of its free variables. Assuming that ps terminates, this will yield
a finite LTS whose structure can be examined.

Let n be the input size (e.g., a list length or number value). Then

1. The naive reverse algorithm nrev runs in quadratic time, while its distilled
version runs in linear time. Nonetheless, their driven versions are (strongly)
bisimilar, and so observationally equivalent.
Explanation of speedup:Drrnrevpa1a2...anqss hasOpn2q states, including states
for the computation of the reverse of every suffix of pa1a2 . . . anq. Among
these, at the end of execution only Opnq states are live, for the reverse of the
full list pa1a2 . . . anq.

2. The naive program to compute Factorial sum (sumfacpnq � 0!� 1!� . . . n!)
has running time Opn2q and allocates Opn2q heap cells, due to repeated
recomputation of 0!, 1!, 2!, . . .; but the distilled version is linear-time. The
two are (again) observationally equivalent since their driven versions are
bisimilar. The driven naive Factorial sum LTS has Opn2q states, but among
these, only Opnq are live at the end of execution.
This example is interesting because both source and transformed programs
are purely tail recursive, and so typical of compiler intermediate code.

3. A more extreme example: the obvious program fib for the Fibonacci func-
tion takes exponential time and will fill up the heap with exponentially many

Towards Understanding Superlinear Speedup by Distillation 103

memory cells. On the other hand, the distilled version of Fibonacci uses an
accumulator and runs in linear time (counting �, � as constant-time opera-
tions). Even so, the two LTS’s are bisimilar.

In contrast to the examples above, the driven program Drrfibnss has Op1.7nq
states, all of which are live. Here speedup source number 3 (Section 4.1)
comes into play: only Opnq states are bisimulation-nonequivalent.

The experiments were carried out in scheme. The first step was parsing: to
transform the input program from the form of Section 2.1 into an LTS, which
for clarity we will call LTSin. The driver as implemented realises the one of
Section 3.2 (except that it it works on LTSin rather than program p). LTSout is
the name of the distiller’s output.

5 Can distillation save time by using space?

5.1 Palindrome: an experiment with an unexpected outcome

Long-standing open questions in complexity theory concern the extent to which
computation time can be traded off against computation space. Consider the set

Pal � ta1a2 . . . an | 1 ¤ i ¤ nñ ai � an�1�i P t0, 1uu

This set in logspace is decidable by a two-loop cons-free program that runs in
time Opn2q.

On the other hand, it can also be decided in linear time by a simple program
with cons. The idea is first to compute the reverse of the input xs � a1a2 . . . an
by using an accumulating parameter; and then to compare xs to its reverse.
Both steps can be done in linear time.

Here, using extra storage space (cons) led to reduced computation time.

A natural conjecture was that any cons-free program deciding membership
in Pal must run in superlinear time. The reasoning was that one would not
expect distillation to transform a cons-free program into one containing cons,
as this would involve inventing a constructor not present in the input program.
To test this conjecture, we ran an existing distiller on the cons-free program
palindrome-decider.

The result was unexpected, and disproved our conjecture: distillation yielded
a linear-time but second-order palindrome recogniser(!)

In effect, the distillation output realises cons by means of second-order func-
tions. Thus, while it does not create any new cons’s its output program, it
achieves a similar effect through the use of lambdas. The output is as follows2:

2 Automatically produced but postprocessed by hand to increase readability.

104 Neil D. Jones, G.W. Hamilton

p xs xs (λzs.True) where

p xs ys q = case xs of

Nil => q ys

| (:: u us) => p us ys (r q u)

r t u = λws.case ws of

Nil => True

| (:: v vs) => case u of

0 => (case v of

0 => t vs

| 1 => False)

| 1 => (case v of

0 => False

| 1 => t vs)

Furthermore, this cons-free second-order program is tail recursive in the sense
of Definition 6.13 from [15]3:

Definition 6. Cons-free program p is higher-order tail recursive if there is a par-
tial order ¥ on function names such that any application f x1. . .xm �. . .e1 e2. . .
such that e1 can evaluate to a closure xg, v1 . . . varitypgq�1y satisfies either: (a)
f¡g, or (b) f�g and the call (e1 e2) is in tail position.

The partial order p¡r suffices for the palindrome program.

5.2 A theorem and another conjecture

How general is it that distillation sometimes achieves asymptotic speedups?
Are the speedups observed in Palindrome, Naive reverse, Factorial Sum and Fi-
bonacci function accidental? Is there a wide class of programs that the distiller
can speed up significantly, e.g., from exponential time to polynomial time?

A lead: Jones [15] studies the computational complexity of cons-free pro-
grams. Two results from [15] about cons-free programs of type [Bool] -> Bool

in our language: Given a set L of finite bit strings:

1. L P logspace iff L is decidable by a first-order cons-free program that is
tail-recursive

2. L P ptime iff L is decidable by a first-order cons-free program (not neces-
sarily tail-recursive)

Beauty flaw: The result concerning ptime, while elegant in form, is tantalising
because the very cons-free programs that decide exactly problems in ptime, in
general run in exponential time. (This was pointed out in [15].)

This problem’s source is repeated recomputation: subproblems are solved
again and again. A tiny example with exponential running time:

3 The definition is semantic, referring to all program executions, and so undecidable
in general. Abstract interpretation can, however, safely approximate it.

Towards Understanding Superlinear Speedup by Distillation 105

f x = if x = [] then True else

if f(tl x) then f(tl x) else False

This can be trivially optimised to linear time, but more subtle examples exist.
More generally, Figure 5 in [15] builds from any ptime Turing machine Z a
first-order cons-free program p that simulates Z. In general p solves many sub-
problems repeatedly; these are not easily optimised away as in the tiny example.

The reason, intuitively: absence of cons means that earlier-computed results
must be recomputed when needed, as they cannot be retrieved from a store.

The “trick” the distiller used in the Palindrome example was to speed up the
given cons-free program (first-order, quadratic-time) by adding a function as an
argument. The resulting second-order Palindrome program ran in linear time.

We now generalise, showing that for any first-order cons-free program, even
one running in exponential time, there is a polynomial-time equivalent.4

Theorem 1. L is decidable by a first-order cons-free program iff L is decidable
by a second-order cons-free program that runs in polynomial time.

Corollary 1. L P ptime iff L is decidable by a second-order cons-free program
that runs in polynomial time.

Some comments before sketching the proof. First, the condition “that runs in
polynomial time,” while wordy, is necessary since (as shown in [15]), unrestricted
second-order cons-free programs decide exactly the class exptime, a proper su-
perset of ptime. In fact, second-order cons-free programs can run in double
exponential time (another variation on the “beauty flaw” remarks above).

Second, the Corollary is analogous to the standard definition: L P ptime iff
it is decidable by a Turing machine that runs in polynomial time. The punch
line is that no tape or other form of explicit storage is needed; it is enough to
allow functions as arguments.

Proof (sketch “if”). Suppose L is decidable by a second-order cons-free program
that runs in polynomial time. All that is needed is to ensure that L can also be
decided by a polynomial-time Turing machine. This follows by the known time
behavior of call-by-value implementations of functional programs, e.g., as done
by traditional compilers that represent functional values by closures.

Proof (sketch “only if”). First, suppose first-order cons-free program p decides
L. Consider the “cache-based algorithm” to compute rrpss as shown in Figure 8
of [15]. While this runs in polynomial time by Theorem 7.16, it is not cons-free
since it uses storage for the cache.

Second, Figure 8 can be reprogrammed, to replace the cache argument by a
second-order function. Rather than give a general construction, we just illustrate
the idea for the Fibonacci function, and leave the reader to formulate the general
construction. The standard definition of Fibonacci:

4 Can this be strengthened to linear time? No, since timepOpnqq � timepOpn2qq.

106 Neil D. Jones, G.W. Hamilton

f n = if n <= 1 then 1 else f(n-1) + f(n-2)

The “cache” of Figure 8 in [15] is a table. For each function f in p, it contains all
the arguments and the results fpargumentsq that have been computed so far.
For a cons-free first-order program and an input of length n there can only be
polynomially many different arguments.

Of course the cache of [15] requires some form of storage, e.g., cons. The
trick in this paper is to go to second-order cons-free form by replacing the cache
by a function c : C � pArguments Ñ Outputsq and simply applying c when
arguments are to be looked up in the cache. The cache c must be updated at
the return of every function, so f : AÑ B is replaced by f 1 : A� C Ñ B � C.

A cached version for the concrete case of the Fibonacci function is:

f n (λn.0) where

f n c =

let cv = c n in

if cv /= 0 then (cv,c) else

if n <= 1 then (1,update c n 1) else

let (u,c1) = f (n-1) c in

let (v, c2) = f (n-2) c1 in

let r = u+v in (r,update c n r)

update c n v =

if c n == v then c else λm.if m==n then v else c m

This program runs in polynomial time: it makes Opnq calls of f when computing
f(n), and the time spent checking the cache contents is also polynomially limited.

%

A conjecture strengthening Theorem 1:

Distillation can transform any first-order cons-free program into an equivalent
second-order cons-free program that runs in polynomial time.

Basis for the conjecture: it seems plausible that distillation, if applied to an
arbitrary first-order cons-free program p, can transform it into an equivalent
second-order program that runs in polynomial time. Reasoning: the transforma-
tion of the proof above, if applied to a general first-order cons-free program,
seems analogous to the transformation that the distiller realised for the “palin-
drome” program.

More generally, each of the “accumulating parameters” that distillation gen-
erated for the reverse, factorial sum and Fibonacci examples resembles a cache
with static structure. Renaining to investigate is whether distillation can yield
an accumulating parameter the corresponds to a cache with dynamic structure,
as seen in the previous program. (Perhaps a static analysis of the Fiboonacci
code above could reveal that c is used in a static manner.)

Towards Understanding Superlinear Speedup by Distillation 107

6 Final remarks and conclusions

6.1 A question to be resolved

A better understanding is emerging on the source of these interesting program
optimisations, though some questions are still less than perfectly clear. An ex-
ample: although the “supercompilation” that distillation is based on [12, 21,
23] yields at most linear speedups, distillation sometimes achieves superlinear
speedups. The major technical difference (at transformation-time) is that distil-
lation does “generalisation” by a form of second-order pattern matching.

The question: why and how does this make such a difference in the efficiency
of transformed programs? Answering this will require a better global insight into
second-order generalisation.

6.2 Are there limits to speedup by distillation?

The fact that distillation often yields linear-time programs may at first seem to
conflict with well-known results from complexity theory [14]: for example, for
any computable function f , there exist computational problems that cannot be
solved in time ¤ fpnq by any program. Consequence: there must be some limit to
how much transformation techniques such as distillation can achieve, regardless
of how strong the techniques used are.

An interesting question: Is there some sense in which distillation achieves a
best possible result, e.g., analogous to a minimal-state finite automaton? This
might be so.

However, by Blum’s speedup theorem [2] some functions have no best pro-
gram, precluding the possibility that distillation can always achieve the best
possible result in terms of efficiency. Furthermore, the output of distillation must
always be a finite program. This requirement could force the output program to
be asymptotically less efficient than an infinite LTS Drrpss resulting from driving
the input program.

6.3 An analogy with the Myhill-Nerode theorem

The Myhill-Nerode theorem [20] concerns definability of sets of finite strings over
a finite alphabet, for example a set L � t0, 1u�. The starting point is to define
an equivalence relation over finite strings x, y P t0, 1u� by

x � y iff @z . pxz P Lô yz P Lq

Theorem L is a regular set if and only if the relation � has only finitely many
equivalence classes. Furthermore, a minimal-state finite automaton ML that ac-
cepts exactly L can be constructed from �.

An interesting fact: the relation � is well-defined for any subset L � t0, 1u�,
whether regular or not. If L is not regular, then ML will have infinitely many
states. In all cases, ML is a homomorphic image of any automaton (finite- or
infinite-state) that accepts L.

108 Neil D. Jones, G.W. Hamilton

A consequence is that one can perform state minimisation of an initial au-
tomaton M by first constructing the relation � for the set accepted by M , and
then constructing ML from the equivalence classes of �.

The analogy: In the case of distillation, an initial program p is given, and
the possibly infinite LTS Drrpss is constructed from it by driving. Once this is
available, the distillation step is applied to construct from it another (finite)
program p1 that will often be faster than the original program p.

While the goal criteria for theMyhill-Nerode construction and distillation
differ (smaller-size state sets for DFA minimisation versus asymptotically faster
programs for distillation), the overall pattern seems tantalisingly similar.

6.4 Conclusions

In spite of many remaining open quesions, we hope the material above, partic-
ularly Sections 3 and 4, clarifies the way that distillation can yield superlinear
program speedups.

The question “how can an Opn2q program or Op2nq program be bisimilar to
an Opnq program?” has been answered: It is not the runtime state transitions of
the two programs that are bisimilar; but rather their driven versions. Further-
more, the numbers of states in their driven versions trace the number of cons’s
performed, and so reflect the two programs’ relative running times.

Finally, a large program set has been identified in which superlinear speedups
are likely to be achievable by by distillation: the first-order cons-free programs.

Acknowledgement: This paper has been much improved as a result of dis-
cussions with Luke Ong and Jonathan Kochems at Oxford University. Referee
comments, particularly by Neil Mitchell, were very useful. The work was sup-
ported, in part, by DIKU at the University of Copenhagen, and by Science
Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering
Research Centre (www.lero.ie).

References

1. Bird, R.: Improving programs by the introduction of recursion. Commun. ACM
20(11), 856–863 (1977)

2. Blum, M.: A machine independent theory of the complexity of recursive functions.
J. ACM 14, 322–336 (1967)

3. Burstall, R., Darlington, J.: A transformation system for developing recursive pro-
grams. Journal of the ACM 24(1), 44–67 (Jan 1977)

4. Chin, W.N.: Towards an automated tupling strategy. In: PEPM. pp. 119–132. ACM
(1993)

5. Chin, W.N., Khoo, S.C., Jones, N.: Redundant call elimination via tupling. Fun-
dam. Inform. 69(1-2), 1–37 (2006)

6. Debois, S.: Imperative program optimization by partial evaluation. In: PEPM
(ACM SIGPLAN 2004 Workshop on Partial Evaluation and Program Manipu-
lation). pp. 113–122 (2004)

Towards Understanding Superlinear Speedup by Distillation 109

7. Ershov, A.P.: On the essence of compilation. In: Neuhold, E. (ed.) Formal Descrip-
tion of Programming Concepts. pp. 391–420. MAsterdam: North-Holland (1978)

8. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Higher-Order and Symbolic Computation 12(4), 381–391 (1999)

9. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical
Computer Science 228(1–2), 5–47 (1999)

10. Hamilton, G.W.: Distillation: Extracting the Essence of Programs. In: Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. pp. 61–70 (2007)

11. Hamilton, G.W., Jones, N.D.: Distillation with labelled transition systems. In:
PEPM (ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Ma-
nipulation). pp. 15–24. ACM (2012)

12. Hamilton, G.W., Jones, N.D.: Proving the correctness of unfold/fold program
transformations using bisimulation. In: Proceedings of the 8th Andrei Ershov In-
formatics Conference. Lecture Notes in Computer Science, vol. 7162, pp. 150–166.
Springer (2012)

13. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1993)

14. Jones, N.D.: Computability and complexity - from a programming perspective.
Foundations of computing series, MIT Press (1997)

15. Jones, N.D.: The expressive power of higher-order types or, life without cons. J.
Funct. Program. 11(1), 5–94 (2001)

16. Jones, N.D.: Transformation by interpreter specialisation. Sci. Comput. Program.
52, 307–339 (2004)

17. Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Compiler optimization cor-
rectness by temporal logic. Higher-Order and Symbolic Computation 17(3), 173–
206 (2004)

18. Lerner, S., Millstein, T.D., Chambers, C.: Cobalt: A language for writing provably-
sound compiler optimizations. Electr. Notes Theor. Comput. Sci. 132(1), 5–17
(2005)

19. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

20. Nerode, A.: Linear automaton transformations. In: Proceedings of the AMS 9. pp.
15–24. AMS (1958)

21. Sørensen, M.H., Glück, R., Jones, N.: A Positive Supercompiler. Journal of Func-
tional Programming 6(6), 811–838 (1996)

22. Turchin, V.F.: Supercompilation: Techniques and results. In: Perspectives of Sys-
tem Informatics. LNCS, vol. 1181. Springer (1996)

23. Turchin, V.: The Concept of a Supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 90–121 (Jul 1986)

24. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In:
Ganzinger, H. (ed.) ESOP’88. 2nd European Symposium on Programming, Nancy,
France, March 1988 (Lecture Notes in Computer Science, vol. 300). pp. 344–358
(1988)

Extracting Data Parallel Computations
from Distilled Programs

Venkatesh Kannan and G. W. Hamilton

School of Computing, Dublin City University, Ireland
{vkannan, hamilton}@computing.dcu.ie

Abstract. To effectively utilise the parallel computing power of the het-
erogeneous architecture in hardware, potential parallelism in programs
needs to be extracted and characterised. The extraction of parallel com-
putations in a given program, though challenging and error-prone in
practice, should be automated for both efficiency and accuracy of the
parallelisation process.
In this paper, we present our initial work to automate the identification
of data parallel computations in a given functional program for their
execution on heterogeneous hardware with multi-core CPUs and GPUs.
To achieve this, we use a program transformation technique called dis-
tillation [11, 12], and a data type transformation technique used in Au-
toPar [10] to transform an arbitrary program to operate over flat data
types. We then choose a set of skeletons that are widely used for parallel
program development [8,9,13,14], and use their characteristics to identify
and extract instances of the skeletons from the transformed program that
operates over flat data types. Following this, we replace these skeleton
instances with their equivalent operations in the Accelerate library [4],
which provides efficient OpenCL implementations for their execution on
multi-core CPUs and GPUs.
We are presently working on formally specifying our parallelisation pro-
cess, before comprehensively evaluating the parallel programs produced
by our approach against expert hand-written parallel programs.

1 Introduction

The architecture of today’s computing systems is made up of a heterogeneous
collection of parallel processing units. The most common parallel processing
units found are multi-core CPUs and many-core GPUs. CPUs are better suited
to efficiently executing latency-critical programs that may have dynamic control-
flow. GPUs, on the other hand, are designed for efficient execution of throughput-
critical programs that have minimal control-flow divergence and a large number
of identical threads.

In this setting, the development of parallel programs is vital to harness the
computing power available in hardware. When it comes to parallelisation of
programs and their execution, there are some tasks to be done either by the
programmer, or by the implementor of the parallel programming system [8].

Extracting Data Parallel Computations from Distilled Programs 111

– Problem decomposition: Identification of computations in a program that
can be executed in parallel.

– Distribution: A mapping from computations that may be executed in parallel
to the available processing units.

– Code and data sharing : Decisions on how to spread the code and data for
the computations to be executed in parallel across the chosen architecture,
aiming at a performance improvement over a sequential execution.

– Communication and synchronisation: A mechanism that describes resource
sharing and control.

Parallelism in a program can be implicit or explicit depending on which of the
above tasks are specified by the programmer, and which are specified by the
implementor in the programming system [8]. A completely explicit parallel pro-
gram will have all four of the above tasks specified by the programmer, while a
completely implicit parallel program will have all of them implemented in the
parallel programming system.

Parallelisation of a given program, on the other hand, can be either manual
or automated. In manual parallelisation, given the existing complexity of im-
plementing an algorithm from its design, manually identifying and expressing
parallel code can make development tedious and error-prone. Alternatively, au-
tomated program parallelisation involves identifying computations in a program
that exhibit parallelism through program analysis. Such parallel computations
can then be extracted and expressed explicitly using program transformation
techniques. However, in practice, such automated parallelisation can be quite
difficult for an arbitrary given program, especially while targeting its execution
on a heterogeneous parallel architecture.

In this paper, we present our initial work that uses a program transformation
technique called distillation [11,12], and extracts potential parallel computations
from distilled programs. This automates the task of problem decomposition, thus
making potential parallelism in a given program more obvious. For the purpose of
this paper, a detailed description of distillation is not required; it is sufficient to
know that the distilled expressions are in a specialised form called distilled form.
To identify and extract parallel computations, we choose a set of skeletons, which
are algorithmic forms that are common to a wide range of parallelisable problems
[8]. The extracted parallel computations are then scheduled for execution on
CPUs and GPUs based on their characteristics.

The remainder of this paper is structured as follows. In Section 2, we define
the syntax and semantics of the higher-order functional language which we use
in the parallelisation process. In Section 3, we elaborate on the characteristics of
parallel computations that we use to decide their scheduling on a CPU or a GPU
for execution. Also presented in this section are the functional definitions of the
chosen skeletons to encompass these characteristics. In Section 4, we present our
method to transform data types of a given program into a form that makes it
amenable to parallelisation, and our parallelisation technique. In Section 5, we
outline the course planned to complete this work. In Section 6, we summarise
by considering related work in this context.

112 Venkatesh Kannan, G. W. Hamilton

2 Language

In this work, we focus on program parallelisation applied to functional languages.
This is primarily due to certain advantages that functional languages have. The
lack of side-effects in pure functional languages is a major benefit, which makes
them easier to analyse, reason about, and manipulate using program transfor-
mation techniques. The lack of side-effects also allows parallel evaluation of in-
dependent sub-expressions in a program. The higher-order functional language
used in this work is presented in Definition 1.

Definition 1 (Language Syntax).

e ::= x Variable
| c e1 . . . ek Constructor Application
| λx.e λ−Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 → e1 | . . . | pk → ek Case Expression
| let x = e0 in e1 Let Expression
| e0 where f1 = e1, . . . , fn = en Local Function Definitions

p ::= c x1 . . . xk Pattern

A program in this higher-order language is an expression e, which can be a
variable, constructor application, λ−abstraction, function call, application, case,
let, or where. Any variables introduced in the λ−abstraction, case patterns or
let are bound, while all other variables are free. Each constructor has a fixed
arity. In an expression c e1 . . . ek, k must be equal to the arity of the constructor
c. The patterns in case branches may not be nested. Techniques exist to trans-
form nested patterns into equivalent non-nested versions [1,19]. No variable may
appear more than once within a pattern and it is also assumed that all patterns
are non-overlapping and exhaustive.

3 Parallel Computations and Skeletons

To be able to identify potential parallelism in a given functional program, we
classify parallel computations into two categories - data parallel and task parallel
computations. Since GPUs are capable of efficiently executing a large number of
identical threads that have minimal control-flow divergence, data parallel com-
putations are better suited for execution on GPUs. However, the cost of transfer-
ring data between the system main memory and the GPU memory is non-trivial.
Hence, given enough computational work per unit data, data parallel computa-
tions that operate on significantly large datasets will have a larger performance
gain when executed on GPUs. All other computations (sequential, data parallel

Extracting Data Parallel Computations from Distilled Programs 113

computations operating on smaller datasets, and task parallel computations) are
scheduled for execution on CPUs.

Data parallelism can be further classified as flat and nested data parallelism.
Flat data parallelism executes more efficiently on GPUs, as opposed to nested
data parallelism. This is because flat data parallelism is closer to the Single
Program Multiple Data (SPMD) model that the GPU hardware is based on.
Also, the control-flow is more regular and less divergent in the case of flat data
parallelism allowing high throughput during execution. Hence, our objective is
to

1. transform any given program to operate over flat data types, and
2. identify all potential flat data parallel computations in the transformed pro-

gram.

We represent flat data parallel computations using skeletons, which are al-
gorithmic forms that are common to a wide range of parallelisable problems.
Our choice of skeletons is based on Blelloch’s work on a vector-model for data
parallel computations [2] that includes a study of primitive operations required
to implement data parallel computations. To encompass the characteristics of
data parallelism, we choose three skeletons − map, reduce and zipWith. These
skeletons are also widely used in the development of programs that have data
parallel computations [8, 9, 13,14].

The three skeletons defined over lists are presented in Definition 2.

Definition 2 (Skeletons Defined over Lists).

map f xs
where
map = λf.λxs.case xs of

Nil → Nil
Cons x′ xs′ → Cons (f x′) (map f xs′)

reduce v f xs
where
reduce = λv.λf.λxs.case xs of

Nil → v
Cons x′ xs′ → reduce (f x′ v) f xs′

zipWith f xs ys
where
zipWith = λf.λxs.λys.

case xs of
Nil → Nil
Cons x′ xs′ → case ys of

Nil → Nil
Cons y′ ys′ → Cons (f x′ y′)

(zipWith f xs′ ys′)

114 Venkatesh Kannan, G. W. Hamilton

– map : applies a function f to each element in a list xs, and produces a list
of the same size as that of the input.

– reduce : collapses a list xs into a single value using an associative binary
operator f , with a unit value v, by accumulating the reduction value.

– zipWith : combines two lists xs and ys point-wise using a binary operator
f on the corresponding elements.

4 Program Parallelisation

Before we apply our parallelisation technique to identify potential data parallel
computations in a program, we need to identify if the program may contain data
parallelism. In this context, we observe that only some of the data types over
which a program is defined are suited to data parallelism such as lists, trees or
arrays. Hence, we allow the developer to specify a set of parallelisable types, γ,
to which our parallelisation technique can be applied.

In our parallelisation approach, we identify instances of the three list skele-
tons in the result of applying distillation to a given program. To facilitate this,
the parallelisable types within a program need to be converted to flat lists. Hence,
it is necessary to transform the program using distillation to operate over these
flat lists in order to identify potential flat data parallel computations using our
skeletons. This is explained in Section 4.1.

Upon transformation of the original program f to operate over lists, we obtain
the transformed program flist. Following this, we use the characteristics of the
skeletons that are presented in Section 3 to identify and extract their instances
from flist. This is explained in Section 4.2.

Our approach to execute the identified skeletons efficiently on CPU or GPU
is explained in Section 4.4.

4.1 Data Type Transformation

We use two sets of functions to transform a program f with input data of type
Tin and output data of type Tout, into a semantically equivalent one, flist, de-
fined on list data types.

For input type Tin ∈ γ, and output type Tout ∈ γ,

– flattenin and flattenout : these functions transform Tin and Tout into lists
of their component types T ′

in and T ′
out.

– unflattenin and unflattenout : these functions transform lists of component
types T ′

in and T ′
out back to their corresponding original data types Tin and

Tout.

The type signatures of these functions are presented in Definition 3. These func-
tions use Dever’s work on data partitioning [10] that defines functions flatten
and unflatten to provide transformations between an instance of type T and a
list of its component types T ′.

Extracting Data Parallel Computations from Distilled Programs 115

Definition 3 (Signatures of Type Transformation Functions).

flattenin :: Tin → (List T ′
in)

unflattenin :: (List T ′
in)→ Tin

flattenout :: Tout → (List T ′
out)

unflattenout :: (List T ′
out)→ Tout

It is to be noted that if Tout ∈ γ, as in the case of map and zipWith skeletons,
then flattenout transforms Tout into List T ′

out. If Tout /∈ γ, as in the case of
reduce skeleton, then the output of flattenout is the original output data type
Tout. The function unflattenout also works in a similar fashion.

As illustrated in Fig. 1, a composition of unflattenin, the original program
f , and flattenout yields a program that is defined over list data types.

Definition 3 (Signatures of Type Transformation Functions).

flattenin :: Tin → (List T ′
in)

unflattenin :: (List T ′
in)→ Tin

flattenout :: Tout → (List T ′
out)

unflattenout :: (List T ′
out)→ Tout

It is to be noted that if Tout ∈ γ, as in the case of map and zipWith skeletons,
then flattenout transforms Tout into List T ′

out. If Tout /∈ γ, as in the case of
reduce skeleton, then the output of flattenout is the original output data type
Tout. The function unflattenout also works in a similar fashion.

As illustrated in Fig. 1, a composition of unflattenin, the original program
f , and flattenout yields a program that is defined over list data types.

Input Data Type

Transformation�
�

�
�List T ′

in
unflattenin−−−−−−−−→ Tin

-

Original Program f�� ��Tin
f−→ Tout

-

Output Data Type

Transformation�
�

�
�Tout

flattenout−−−−−−−→ List T ′
out

'

&

$

%

?

distill

Transformed Program flist�
�

�
�List T ′

in
flist−−−→ List T ′

out

?

Identify instances of skeletonlist

Efficient Program fsk defined

using skeletonlist applications�
�

�
�List T ′

in
fsk−−→ List T ′

out

Fig. 1. Transformation of Original Program
Fig. 1. Transformation of Original Program

116 Venkatesh Kannan, G. W. Hamilton

4.2 Parallelisation Technique

Fig. 1 also illustrates our parallelisation technique. As a first step, we distill the
composition of unflattenin, f and flattenout. This yields a program flist, which
is semantically equivalent to f and is defined on list data types.

The definition of flist is in the distilled form, which is presented in Definition
4. In an expression in the distilled form, deρ, resulting from distillation, ρ denotes
the set of variables that have been introduced in let expressions, and cannot
therefore appear as a selector in a case expression. As a result of this, expressions
in distilled form do not create intermediate data structures.

Definition 4 (Syntax of Distilled Form).

deρ ::= x
| c deρ1 . . . de

ρ
k

| λx.deρ

| f
| deρ x
| case x of p1 → deρ1 | . . . | pk → deρk where x /∈ ρ
| let x = deρ0 in de

(ρ ∪ {x})
1

| f x1 . . . xn where f = λx1 . . . λxn.de
ρ

Additionally, we have found that the three skeletons described in Section 3
can be associated with the following three characteristics of recursive functions
that a given program in distilled form may have.

– Case 1 : A recursive function has one decreasing parameter, which is of
the same type as the result. This would indicate the presence of a map-like
computation.

– Case 2 : A recursive function has one decreasing parameter, which is of a
different type to the result. This would indicate the presence of a reduce-like
computation.

– Case 3 : A recursive function has more than one decreasing parameter. This
would indicate the presence of a zipWith-like computation.

In addition to problems that fit one of the three cases mentioned above, we
may also have problems with any combination of these cases indicating the need
for a composition of skeletons.

Using these characteristics of sub-expressions, we identify instances of the
skeletons in the transformed program flist. As a result, instances of the skeletons
embedded in flist are extracted. This yields the program fsk that is defined using
applications of the skeletons skeletonlist.

4.3 An Example : Find Maximum

The parallelisation of a program, findMax, to find the largest positive element
in a list using the proposed parallelisation approach, is presented in Example 1.

Extracting Data Parallel Computations from Distilled Programs 117

The input program to the transformation process is shown in expression (1).
Here xs is the list to be parsed through to find the largest element. The definition
consists of two functions: bigger to find the larger of two given elements, and
findMax to find the largest positive element in a given list.

The distillation of expression (1), without identifying instances of list skele-
tons, produces the distilled form of findMax presented in expression (2).

Expression (3) is the result of identifying list skeletons in expression (2) using
our parallelisation technique. Here, f is the reduction operation that distillation
has extracted in a definition that uses an application of the reduce skeleton.

Example 1 (Find Maximum in List).

Expression (1) : Original Program

findMax xs 0
where
findMax = λxs.λv.case xs of

Nil → v
Cons x′ xs′ → bigger x′ (findMax xs′ v)

bigger = λx.λv.case (x > v) of
True → x
False → v

Expression (2) : Distilled Program

findMax xs 0
where
findMax = λxs.λv.case xs of

Nil → v
Cons x′ xs′ → let v′ = (case (x′ > v) of

True → x′

False → v)
in findMax xs′ v′

Expression (3) : Distilled Program with Skeletons Identified

findMax xs 0
where
findMax = λxs.λv.let f = λx′.λv′.(case (x′ > v′) of

True → x′

False → v′)
in reduce v f xs

For parallel evaluation of the application of reduce skeleton, it is required
that the reduction operator be associative. As a result, we have to prove the asso-
ciativity of a reduction operator, f , used by the extracted reduce skeleton. This

118 Venkatesh Kannan, G. W. Hamilton

can be achieved by distilling the two expressions f (f x y) z and f x (f y z) us-
ing the definition of f . If the distilled forms of both expressions are syntactically
equal, then f is associative.

4.4 Execution of Data Parallel Computations

The skeleton applications identified in the distilled program represent data paral-
lel computations. Skeleton applications that work on smaller datasets are sched-
uled for execution on CPU, while those that are computation intensive and work
on significantly larger datasets are scheduled for execution on GPU. This is due
to the potentially larger overhead involved in shipping the data between the sys-
tem main memory and the GPU memory. To allow the execution of the skeleton
applications on CPUs and GPUs alike, we make use of the Accelerate library of
operations [4].

Accelerate Library. This is a domain-specific purely functional high-level lan-
guage embedded in Haskell. The library contains efficient data parallel imple-
mentations for many operations including the chosen skeletons : map, reduce
and zipWith. We replace the identified skeleton applications with calls to the
corresponding Accelerate library operations, which have efficient OpenCL im-
plementations. This allows their scheduling and execution on CPUs and GPUs,
among other OpenCL-compatible processing units.

The Accelerate library operations are defined over their custom Array sh e
data type. Here, sh is a type variable that represents the shape of the Accelerate
array. It is implemented as a heterogeneous snoc-list where each element in the
list is an integer to denote the size of that dimension. A scalar valued array is
represented in sh by Z, which acts as both the type and value constructor. A
dimension can be added to the array by appending the size of that dimension to
sh. The type variable e represents the data type of the elements stored in the
Accelerate array.

To execute the data parallel computations in fsk on a CPU or GPU, we re-
place each application of skeletonlist with a call to the corresponding Accelerate
library operation skeletonacc. The resulting skeletonacc calls operate over the
Accelerate array types; inputs of type Array shin T sk

′
in , and output of type

Array shout T
sk′
out . Consequently, we need to transform the input and output

data of the original program f to and from the Accelerate array type.
These transformations are illustrated in Fig. 2 and Fig. 3 as “Input Data

Transformation” and “Output Data Transformation”, and are explained below:

1. Input Data Transformation
– flattenin : This function transforms the input data for f of type Tin ∈ γ

into List T ′
in for input to fsk.

– Each skeleton application skeletonlist in fsk operates over input data of
type T skin . We replace these skeletonlist applications with calls to cor-
responding skeletonacc operations that operate over Accelerate array
types.

Extracting Data Parallel Computations from Distilled Programs 119

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

Input Data

Transformation�� ��Tin
flattenin−−−−−−−→ List T ′

in

-

Efficient Program fsk defined

using skeletonlist applications�� ��List T ′
in

fsk−−→ List T ′
out

-

Output Data

Transformation�� ��List T ′
out

unflattenout−−−−−−−−−→ Tout

Fig. 2. Transformation of Data for Transformed Program fsk

Application of skeletonlist�� ��T sk
in

skeletonlist−−−−−−−−→ T sk
out

?

Replace with corresponding call to

Accelerate operation skeletonacc

Accelerate operation skeletonacc

corresponding to skeletonlist�� ��Array shin T sk′
in

skeletonacc−−−−−−−−→ Array shout T sk′
out

Input Data

Transformation

T sk
in

?
toAcc

Array shin T sk′
in

'

&

$

%
- -

Output Data

Transformation

Array shout T sk′
out

?
fromAcc

T sk
out

'

&

$

%
Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

Fig. 2. Transformation of Data for Transformed Program fsk

– toAcc : This function transforms the input data for skeletonlist of type
T skin into an Accelerate array of type Array shin T

sk′
in .

To define toAcc, we use the fromList function that is available in the
Accelerate library [3], which creates an Accelerate array from a list.

2. Output Data Transformation

– fromAcc : This function transforms the output from a skeletonacc op-
eration of type Array shout T

sk′
out back to the output type T skout of the

corresponding skeletonlist application.
To define fromAcc, we make use of the toList function that is available
in the Accelerate library, which converts an Accelerate array into a list.

– This output from the skeletonlist application is then plugged back into
its context in fsk.

– unflattenout : This function transforms the output from fsk of type
List T ′

out back to the output of type Tout of the original program f .

Input Data

Transformation�� ��Tin
flattenin−−−−−−−→ List T ′

in

-

Efficient Program fsk defined

using skeletonlist applications�� ��List T ′
in

fsk−−→ List T ′
out

-

Output Data

Transformation�� ��List T ′
out

unflattenout−−−−−−−−−→ Tout

Fig. 2. Transformation of Data for Transformed Program fsk

Application of skeletonlist�� ��T sk
in

skeletonlist−−−−−−−−→ T sk
out

?

Replace with corresponding call to

Accelerate operation skeletonacc

Accelerate operation skeletonacc

corresponding to skeletonlist�� ��Array shin T sk′
in

skeletonacc−−−−−−−−→ Array shout T sk′
out

Input Data

Transformation

T sk
in

?
toAcc

Array shin T sk′
in

'

&

$

%
- -

Output Data

Transformation

Array shout T sk′
out

?
fromAcc

T sk
out

'

&

$

%
Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

Fig. 3. Transformation of Data for Accelerate Operations skeletonacc

120 Venkatesh Kannan, G. W. Hamilton

5 Future Work

We are currently working on formally specifying the transformations rules to
parallelise a distilled program, which was described in Section 4. Following this,
we will comprehensively evaluate our approach qualitatively and quantitatively.

To evaluate our parallelisation approach, we require a suite of benchmark
programs with diverse definitions for each. These programs will include vector
dot-product, point-wise vector/matrix arithmetic, matrix multiplication, search
algorithm, sort algorithm, histogram generation, image rotation, image convo-
lution, string reverse algorithm, and maximum segment sum algorithm.

One part of our evaluation will be a qualitative analysis of the coverability of
our representation of parallel computations and of the proposed parallelisation
technique. We define coverability as the ability to identify potential data parallel
computations in a spectrum of diverse definitions of benchmark programs. All
the programs we have chosen for benchmarking have potential data parallelism.
By distilling these programs and applying our transformation to identify the
skeletons, we evaluate their coverability over different forms in which data par-
allel computations may be expressed in the benchmark programs. Following this,
we will address the inclusion of additional skeletons or combinations of skeletons
to identify data parallel computations that are otherwise manually identifiable.

Another part of our evaluation will be a quantitative analysis of the per-
formance of our parallelisation technique and the execution of the parallelised
programs that are produced. We will perform a quantitative analysis using the
benchmark programs by comparing the performance metrics listed below for
different configurations of CPU-GPU based hardware and OpenCL program ex-
ecution environment settings such as varying sizes of datasets, number of threads
created, number of work-groups, and work-group sizes. We will also determine
the overhead involved in program and data transformation as a factor of the
difference in execution times of parallelised and non-parallelised versions of the
benchmark programs.

The performance metrics for the quantitative analysis are:

1. Execution time
(a) Time to transfer data between system main memory and GPU memory.
(b) Time to transfer code from system main memory to GPU memory.
(c) Time to execute the identified data parallel computations on GPU, and

remaining computations on CPU.
(d) Time to execute the parallelised input program on a multi-core CPU.
(e) Time to execute the given input program without parallelisation on CPU.

2. Program transformation time
(a) Time to parallelise a given input benchmark program using our approach.

3. Data transformation time
(a) Time to flatten input data into lists.
(b) Time to transform input data into Accelerate array using fromList.
(c) Time to transform output data from Accelerate operations using toList.
(d) Time to unflatten the output data to get the final result.

Extracting Data Parallel Computations from Distilled Programs 121

With respect to OpenCL code, metrics 1a, 1b and 1c listed above will be
collected by time-stamping the corresponding OpenCL APIs that are used to
transfer code and data between the system main memory and the GPU memory,
and to schedule the execution of OpenCL kernel functions on the device.

To collect the metrics 1c, 1d, 1e, 2a, 3a, 3b, 3c and 3d that are related to the
execution of computations on CPU, we intend to use the Criterion [17] or the
ThreadScope [18] performance measurement packages for Haskell.

6 Conclusion and Related Work

To summarise, we automate the process of extracting potential parallelism in a
given functional program to enable its execution on a heterogeneous architec-
ture with CPUs and GPUs. For this, we choose a set of skeletons that are widely
used to define data parallel computations in programs. Presently, we aim to use
the characteristics of these skeletons to identify and extract their instances from
programs in distilled form. Applications of the identified skeleton instances will
then be replaced with calls to the corresponding operators in the Accelerate li-
brary, which provides efficient implementations for the skeletons in OpenCL so
that they can be executed on multi-core CPUs and GPUs. In the next steps, we
will complete the transformations required to call Accelerate library operators,
and evaluate the efficiency of the enlisted skeletons to identify potential paral-
lelism in a suite of benchmark programs. This will also include evaluation of the
speedups gained from executing the data parallel computations on the GPU.
Finally, we plan to investigate enlisting additional skeletons to encompass more
parallel computation patterns including task parallelism, and address a wider
range of input programs.

Previously, the use of skeletons as building blocks during program develop-
ment has been widely studied. The early works by Murray Cole [8] and Darling-
ton et. al. [9] exhaustively investigate the use of higher-order skeletons for the
development of parallel programs. They present a repertoire of skeletons that
cover both task parallel and data parallel computations that may be required to
implement algorithms. Later on, addressing the possible difficulties in choosing
appropriate skeletons for a given algorithm, Hu et. al. proposed a transformation
called diffusion in [13]. Diffusion is capable of decomposing recursive definitions
of a certain form into several functions, each of which can be described by a
skeleton. They also present an algorithm that can transform a wider range of
programs to a form that is decomposable by diffusion. This work has further led
to the accumulate skeleton [14], a more general parallel skeleton to address a
wider range of parallelisable problems.

Following the use of skeletons as building blocks in parallel program devel-
opment, there has been significant work on including parallel primitives as an
embedded language in widely used functional languages such as Haskell. One
of the earliest works can be traced to Jouret [16], who proposed an extension
to functional languages with data parallel primitives and a compilation strategy
onto an abstract SIMD (Single Instruction Multiple Data) architecture. Obsid-

122 Venkatesh Kannan, G. W. Hamilton

ian is a language for data parallel programming embedded in Haskell, developed
by Claessen et. al. [6]. Obsidian provides combinators in the language to ex-
press parallel computations on arrays, for which equivalent C code is generated
for execution on GPUs. An evaluation by Alex Cole et. al. [7] finds that the
performance results from generating GPU code from Haskell with Obsidian are
acceptably comparable to expert hand-written GPU code for a wide range of
problems. Among others, Accelerate [4] provides a domain-specific high-level
language that works on a custom array data type, embeddeded in Haskell. Us-
ing a library of array operations, which have efficient parameterised CUDA and
OpenCL implementations, Accelerate allows developers to write data parallel
programs using the skeleton-based approach that can be executed on GPUs.

Despite the extensive work on identifying and developing skeletons, these
approaches require manual analysis and identification of potential parallelism in
a problem during development. As stated earlier, this can be quite tedious in
non-trivial problems. On the other hand, a majority of the literature on skeletons
involve map and reduce for data parallel computations, which are integral in our
work to automate parallelisation. We include the zipWith skeleton to address
problems that operate on multiple flat datasets.

Another option for a parallel programmer is Data Parallel Haskell (DPH),
an extension to the Glasgow Haskell Compiler (GHC), which supports nested
data parallelism with focus on multi-core CPUs. Though flat data parallelism
is well understood and supported, and better suited for GPU hardware, nested
data parallelism can address a wider range of problems with irregular parallel
computations (such as divide-and-conquer algorithms) and irregular data struc-
tures (such as sparse matrices and tree structures). To resolve this, DPH, which
focuses on such irregular data parallelism, has two major components. One is
a vectorisation transformation that converts nested data parallelism expressed
by the programmer, using the DPH library, into flat data parallelism [15]. The
second component is a generic DPH library that maps flat data parallelism to
GHC’s multi-threaded multi-core support [5]. It is worth pointing out that our
method to automate parallelisation includes flattening steps that are similar to
the vectorisation transformation in DPH. This flattening step provides a com-
mon form to the transformed input program and our enlisted skeletons, thereby
aiding in the extraction of flat data parallel computations.

Acknowledgement

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

References

[1] L. Augustsson. Compiling Pattern Matching. Functional Programming Languages
and Computer Architecture, 1985.

Extracting Data Parallel Computations from Distilled Programs 123

[2] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press,
1990.

[3] Manuel M. T. Chakravarty, Robert Clifton-Everest, Gabriele Keller,
Sean Lee, Ben Lever, Trevor L. McDonell, Ryan Newtown, and Sean
Seefried. An Embedded Language For Accelerated Array Computations.
http://hackage.haskell.org/package/accelerate.

[4] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating Haskell Array Codes with Multicore GPUs. Pro-
ceedings of the Sixth Workshop on Declarative Aspects of Multicore Programming,
2011.

[5] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: A Status Report. Workshop
on Declarative Aspects of Multicore Programming (DAMP’07), 2007.

[6] Koen Claessen, Mary Sheeran, and Joel Svensson. Obsidian: GPU Programming
In Haskell. Proceedings of 20th International Symposium on the Implementation
and Application of Functional Languages (IFL 08), 2008.

[7] Alex Cole, Alistair A. McEwan, and Geoffrey Mainland. Beauty And The Beast:
Exploiting GPUs In Haskell. Communicating Process Architectures, 2012.

[8] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, Cambridge, MA, USA, 1991.

[9] John Darlington, A. J. Field, Peter G. Harrison, Paul Kelly, D. W. N. Sharp,
Qiang Wu, and R. Lyndon While. Parallel Programming Using Skeleton Func-
tions. Lecture Notes in Computer Science, 5th International PARLE Conference
on Parallel Architectures and Languages Europe, 1993.

[10] Michael Dever and G. W. Hamilton. Automatically Partitioning Data to Facilitate
the Parallelization of Functional Programs. PSI’14, 8th International Andrei
Ershov Memorial Conference, 2014.

[11] G. W. Hamilton. Distillation: Extracting the essence of programs. Proceedings of
the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation, 2007.

[12] G. W. Hamilton and Neil D. Jones. Distillation With Labelled Transition Systems.
Proceedings of the ACM SIGPLAN 2012 workshop on Partial Evaluation and
Program Manipulation, 2012.

[13] Zhenjiang Hu, Masato Takeichi, and Hideya Iwasaki. Diffusion: Calculating Effi-
cient Parallel Programs. In 1999 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM 99), 1999.

[14] Hideya Iwasaki and Zhenjiang Hu. A New Parallel Skeleton For General Accu-
mulative Computations. International Journal of Parallel Programming, 2004.

[15] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel
M. T. Chakravarty. Harnessing the Multicores: Nested Data Parallelism in
Haskell. Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’08), 2008.

[16] Guido K. Jouret. Compiling Functional Languages For SIMD Architectures. Par-
allel and Distributed Processing, IEEE Symposium on, 1991.

[17] B. O’Sullivan. The Criterion Package. http://hackage.haskell.org/package/criterion.
[18] Satnam Singh, Simon Marlow, Donnie Jones, Duncan Coutts, Miko-

laj Konarski, Nicolas Wu, and Eric Kow. The ThreadScope Package.
http://hackage.haskell.org/package/threadscope.

[19] Philip Wadler. Efficient Compilation of Patten Matching. S. P. Jones, editor,
The Implementation of Functional Programming Languages, 1987.

On Valentin Turchin’s Works on
Cybernetic Philosophy, Computer Science and

Mathematics

Andrei V. Klimov?

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
klimov@keldysh.ru

Abstract. The history, context, main ideas, motivation and research
objectives of Valentin Turchin’s works on philosophy, cybernetics, com-
puter science and mathematics are outlined. Valentin Turchin’s scientific
legacy comprises three parts: cybernetic philosophy with the notion of
a metasystem transition as a quantum of evolution; application of the
philosophy to analysis of evolution of human society; and application of
the philosophy to science — cybernetics, computer science and math-
ematics. In computer science, his main contributions are the program-
ming language Refal and program transformation technique known as
supercompilation. In mathematics, he has developed a new constructive
foundation of mathematics referred to as the Cybernetic Foundation of
Mathematics.

Keywords: Cybernetic Philosophy, Metasystem Transition Theory, evo-
lution, programming language Refal, supercompilation, Cybernetic Foun-
dation of Mathematics.

1 Introduction

Valentin Fedorovich Turchin (14.2.1931–07.4.2010) was a scholar of a rare kind,
for whom the purpose of scientific work was a derivative of his philosophical
worldview and the meaning of life.

In this paper an attempt is made to give a bird’s eye view of Valentin
Turchin’s scientific and philosophical legacy. His works on philosophy, society
and Cybernetic Foundation of Mathematics are just briefed, while his achieve-
ments in computer science are discussed in more detail.

This is a slightly revised and updated version of the Russian paper [11].

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

On Valentin Turchin’s Works 125

2 Valentin Turchin’s Biography in Brief

After graduation from the Physics Department of Moscow State University in
1952, Valentin Turchin worked at the Institute of Physics and Power Engineering
in Obninsk, USSR. Shortly after defending his doctoral thesis on the physics of
slow neutrons (which later became a book [17]), he was invited by academician
M.V. Keldysh to the Institute of Applied Mathematics of the USSR Academy
of Sciences and moved to Moscow in 1964. At that time, he also changed the
direction of his scientific work from theoretical physics to philosophy, cybernet-
ics, computer science, and programming. He expressed that theoretical physics
was approaching its crisis, and to resolve it, we needed high automation of ma-
nipulation of physical and mathematical theories and formal linguistic models
by means of computers. As a first step towards that great goal, in the 1960s he
developed a programming language Refal for processing symbolic information,
and in the 1970s laid the foundation for a new program transformation method,
which he called supercompilation. In those same years a group of undergraduate
and graduate students of Moscow State University, Moscow Engineering Physics
Institute and the Moscow Institute of Physics and Technology started working
with him on the implementation of Refal and supercompilation.

In 1972, Valentin Turchin joined the Central Research Institute of Automa-
tion Systems in Construction (TsNIPIASS), where he headed a laboratory. To-
gether with his disciples, he continued to develop Refal and its applications, as
well as supercompilation. In summer 1974, he was dismissed for his political and
human rights activities (e.g., [15]) and advocacy of Andrei Sakharov and Alexan-
der Solzhenitsyn. Before he and his family had to emigrate to the United States
in 1977, he was unemployed and continued his scientific work at home. However
weekly research seminars with his students on Tuesdays did not interrupt.

Upon arrival in the United States in 1978, Valentin Turchin worked for one
and a half years in the Courant Institute of Mathematical Sciences in New York
with Jacob Schwartz, the author of the SETL language. Thereafter, until his
retirement in 1999, he was a professor at the City College of the City University
of New York (CC CUNY). During these years he made his main contributions to
supercompilation (see Section 6 below) and foundation of mathematics (Section
7), and continued development of cybernetic philosophy (Sections 8).

3 Valentin Turchin’s Trilogy

In 1977, shortly before his departure from the Soviet Union, Valentin Turchin
told about his conception of scientific and philosophical “trilogy”, part of which
he had already realized, and was going to work on the remaining areas:

The philosophical part comprises the cybernetic philosophy elaborated in his
book “The Phenomenon of Science: a cybernetic approach to human evolution”
[24]. He introduced the concept of a metasystem transition as a uniform quantum
of evolution and illustrated it by many examples from the origin of the life to
the emergence of the human being and then to human culture with science as

126 Andrei V. Klimov

its highest point. A metasystem transition is the emergence of a new level of
control over already existing systems, which usually multiply, and construction
of a system of a new kind comprised of the control subsystem and a variety
of controlled subsystems. From Valentin Turchin’s viewpoint, the evolutionary
worldview also gives us an insight into moral problems what is good and bad
as well as the meaning of life: “good” is what contributes to the evolution and
creation, “bad” is destruction and inhibition of evolution. In the basis of the
meaning of life lies the idea of creative immortality as a personal contribution
to the eternal evolution.

The social part is application of the cybernetic philosophy to the evolution of
society and social issues, presented in his book “The Inertia of Fear and the Sci-
entific Worldview” [29]. Here he outlined his view of the history of the mankind,
having separated it into three stages, based on the method of integration of
people into society: physical coercion (slavery), economic coercion (capitalism)
and liberal integration based on ideological “coercion”, to which humanity is
still going. To refer to that new social organization of the future, he used the
old term “socialism”. From his viewpoint, the transition from capitalism to so-
cialism is a large-scale metasystem transition. As the evolution is essentially
non-deterministic and metasystem transitions can occur in various ways, dead-
locks and kickbacks are possible rather then stable forward movement to more
and more complicate organization (as it is commonly assumed with the concept
of “progress”). The socialism in the Soviet Union was an attempt to build a so-
ciety, which integrates people based on ideas and spiritual culture, but it failed.
Instead of proper socialism, the result was totalitarianism, in which individuals
have lost their main trait — the free will, while a successful metasystem transi-
tion should create a new level of control to integrate subsystems in the system
without destroying the basic features of the subsystems, but further developing
them.

The scientific part is application of the concept of a metasystem transition to
obtaining scientific results. Valentin Turchin told that a new philosophical ideas
are impossible to promote without demonstrating their fruitfulness for specific
scientific achievements. Only if a philosophy helps to produce new ideas and to
analyze various phenomena in science and society, it will allure people. When
Valentin Turchin talked about these plans in 1977, one of his achievements in
the field of programming has been created, the second one was at the level of
general principles and methods, and he created the third one later in the United
States:

– the Refal programming language
– the method of program transformation referred to as supercompilation
– the Cybernetic Foundation of Mathematics

4 Refal as a Metalanguage

Valentin Turchin promoted the view of science as formal linguistic modeling of
the reality, rather than learning absolute truths [6,24]. In particular, mathemat-

On Valentin Turchin’s Works 127

ics studies the properties of formal models rather than any ideal objects. With
the advent of computers, the mankind has obtained a tool independent of the
human mind, which worked with linguistic models. Since then, a person can
avoid routine manual manipulation of symbols and place them on a computer,
reserving to himself the development of algorithms and programs. The advent
of computers and programming as a human activity is a large-scale metasystem
transition in the history of mankind in general and science in particular, aimed
at automating manipulation of formal linguistic models.

The next metasystem transition was automation of computer programming
and emergence of programming languages and programs that produce programs,
that is compilers. The programs themselves became objects of manipulation by
programs.

In the mid 1960s, Valentin Turchin created the language Refal [18–20] as
a meta-language for processing texts in formal languages to enable further de-
velopment of this large-scale metasystem transition. In those days, Refal was
a language of higher level than the existing languages for processing symbolic
information like Lisp, Snobol, etc. From its inception to the end of the 1980s,
Refal was actively used in the USSR for writing compilers, macro generators,
interpreters, as well as for other kinds of text manipulation and transformation
of linguistic models: computer algebra, artificial intelligence, construction and
check of mathematical proofs, etc.

A major problem, which Valentin Turchin wanted to solve with the use of
Refal and which is still open, is computer verification of mathematical texts from
the Bourbaki treatise. Once in early 1970s, Valentin Turchin asked Sergei Ro-
manenko, then a student of Moscow State University, to conduct experiments on
expanding definitions in the formal language of the first volume of the Bourbaki
treatise “Set Theory”. However, even a very simple formula exploded exponen-
tially in size. Being very surprised, he expressed an idea that some metasystem
transition had to be performed, but then it was unclear how. Later he conceived
supercompilation as a tool for performing such metasystem transitions (see Sec-
tion 5 below). Although the problem of analysis of mathematical texts like that
of the Bourbaki treatise is not solved yet, at least one promising approach that
uses supercompilation has been identified [7].

In the area of programming languages, Valentin Turchin expected explosion
of the number of domain-specific languages, according to the general principles
of his Metasystem Transition Theory. In “The Phenomenon of Science” he for-
mulated the Law of Expansion of the Penultimate Level, which says that when a
new level of control emerges, subsystems of the prior level multiply quantitatively
and/or qualitatively. In the 1960s and 1970s, we observed the development of for-
mal and software means for description of languages, systems for programming
interpreters and compilers (referred to as compiler compilers), macro genera-
tors, etc. This was the making of a metasystem over programming languages.
The creation of new languages was facilitated, resulting in the growth of their
number and complexity. Valentin Turchin emphasized that language creation is
a natural human trait. Each application area must generate its own formal lan-

128 Andrei V. Klimov

guage. Considering the importance of this task, he demonstrated how to build a
macro system using Refal as a macro language [23].

Interestingly, this prediction initially did not come true as he expected. In the
1980s, macro systems and compiler compilers went out of fashion. By the 1990s,
it seemed that new programming languages ceased to appear. But then came
the 2000s and construction of domain-specific languages became popular. As
in the 1960s and 1970s, we have been observing multiplication of programming
languages (e.g., scripting languages, domain-specific languages), data formats
(e.g., XML-based ones), interface specification languages, and many other kinds
of languages.

5 Emergence of Supercompilation

After the first applications of Refal for formal text processing, having practi-
cally observed their complexity, Valentin Turchin started finding ways to further
automate the creation of efficient meta-programs, programs that generate and
transform programs. Once at a seminar in 1971, he said: “We must learn how to
manipulate computer programs like we manipulate numbers in Fortran.” Defi-
nitions of programming languages should become subject of transformations as
well. This is a one more metasystem transition.

For Valentin Turchin, the Metasystem Transition Theory was not just con-
ceptual framework, with which he analyzed phenomena, but also a “guide to
action”. By learning how metasystem transitions happens, he revealed typical
patterns and used them to intentionally construct new metasystem transitions
in order to accelerate the development of scientific areas of interest to him. A
lot of such material were supplied by metamathematics and mathematical logic.
He paid much attention to these topics in his working seminars in Keldysh In-
stitute in early 1970s. At that time he conceived supercompilation as a method
of equivalence transformation of Refal programs [21,22].

First Valentin Turchin expressed these ideas at a series of seminars in winter
1971–72. He wrote on a blackboard a simple program — an interpreter of arith-
metic expressions in Refal, and suggested to perform “computation in general
form” of a sample expression with variables instead of some numbers. He taught
us that introduction of variables and computation in general form is a common
metasystem transition used in mathematics, and we should take it for program
manipulation as well. At that seminar, having manually performed computa-
tions over a function call with an arithmetic expression with variables, he got
a text resembling the result of translation of the expression to computer code.
This was what is now known as specialization of a programs with respect to a
part of arguments.

Shortly thereafter, in 1972, he presented this technique in formal form [21].
This paper marks the beginning of the history of supercompilation. However, it
contained its basic level only, called driving in the next more detailed publication
in 1974 [22]. In the first paper [21], he also defined a universal resolving algorithm

On Valentin Turchin’s Works 129

(URA) based on driving. By a remarkable coincidence, the Prolog language,
which is based on a similar technique, appeared in 1972 as well.

From 1974, being unemployed (for political reasons, as a dissident), Valentin
Turchin could not publish papers, and the birth of supercompilation occurred
in form of lectures at a series of 7 weekly seminars in the winter 1974–75, which
took place in “ASURybProekt”, Central Design and Technological Institute for
Automated Control Systems of the USSR Ministry of Fisheries, where one of
the permanent members of the seminar Ernest Vartapetyan worked.

All of the main ideas of supercompilation were presented in those lectures. In
particular, at the third seminar, Valentin told how to produce a compiler from
an interpreter as well as a compiler compiler by means of three metasystem
transitions using a supercompiler. This was what later became known as Futa-
mura projections. (Yoshihiko Futamura conceived these results before Valentin
Turchin: the first two projections in 1971 [4], and the third projection — a
compiler compiler — in 1973 [5].)

Supercompilation became a classical example of building a complex formal
system by means of a number of metasystem transitions:

1. The first metasystem transition over computations: transition from concrete
states to representation of sets of states in form of states with variables (re-
ferred to as configurations), from computation on ordinary values to com-
putation with variables (referred to as driving), from computations along
one thread to unrolling a potentially infinite tree representing all possible
computation threads.

2. The second metasystem transition over driving: folding a (potentially) infi-
nite tree into a finite graph by folding (looping back).

3. The next metasystem transitions over folding operations: various strategies
to stop driving, performing generalization and reconstruction of the tree and
graph. Valentin Turchin called the second metasystem transition and first
versions of the third metasystem transition configuration analysis. (Notice
that separation into metasystem transitions may be ambiguous, especially
when they occurred simultaneously.)

4. Further metasystem transitions over computations and driving: neighborhood
analysis — generalized computations with two kinds of variables (variable
of the second kind are naturally called metavariables) in order to obtain not
only the tree and graph of computations, but also a set of states and the
set of configurations that go along the same way of concrete or generalized
computations. Valentin conceived the neighborhood analysis to improve the
configuration analysis as the next level of control, allowing to select better
points of generalization and folding. (Later Sergei Abramov suggested other
interesting application of neighborhood analysis, including testing [1].)

Prior to his departure from the USSR, Valentin Turchin was unable to publish
anything on supercompilation proper. Only in a book on Refal [42], published in
1977 without attribution in order not to mention the name of Valentin Turchin,
five pages (92-95) had been inserted in Chapter “Techniques of using Refal”

130 Andrei V. Klimov

at the end of Section “Translational problem”, which contained formulas to
generate a compiler and a compiler compilers.

A year before the departure, in Fall 1976, Valentin Turchin learned that
Andrei Ershov conducted research into mixed computation, which has close ob-
jectives. When Andrei Ershov visited Moscow, they met in hotel “Academic”
and exchanged ideas. They put into correspondence the Ershov’s notion of a
generating extension and Valentin Turchin’s compiler generation formula. In [3],
A.P. Ershov called the formula of the second metasystem transition that reduces
a generating extension to a specializer (supercompiler), the double run-though
theorem by V.F. Turchin. (Here “run-through” means “driving”.)

6 Further Development of Supercompilation

In his first years in the United States in Courant Institute (1978-1979), Valentin
Turchin described the ideas and methods on Refal and supercompilation in a big
report [26]. Several of those ideas await further development and implementation
still, e.g., walk grammars, the notions of metaderivative and metaintegral based
on the walk grammars, metasystem formulas, self-application. The methods that
deal with walks in the graph of configuration lie at the next meta-level compared
to the configuration analysis, which deal with configurations. This work outlined
the next metasystem transition to higher-level supercompilers. However, only re-
cently the first two-level supercompiler [12] has been constructed, although based
on other ideas. (Notice that this demonstrates the ambiguity and indeterminacy
of metasystem transitions).

In the 1980s, working in CC CUNY together with a small group of students,
he created and implemented on IBM PC a new version of Refal, Refal-5 [35], and
developed a series of supercompilers for Refal. On those weak computers, they
managed to carry out first experiments with supercompilers [25,32,43]. He also
outlined approaches to problem-solving using supercompilers [27], in particular,
to theorem proving [28].

The first journal paper on supercompilation [31], which is highly cited, was
published in 1986.

Gradually researchers from other universities joined Valentin Turchin’s work
on supercompilation, most notably at the Department of Computer Science at
the University of Copenhagen, chaired by Neil D. Jones, who has developed
another method of program specialization — partial evaluation. However here
we restrict ourselves to the line of Valentin Turchin’s works and just mention
some of the related papers of other authors.

In 1987, Dines Bjorner together with Neil Jones and Andrei Ershov organized
a Workshop on Partial Evaluation and Mixed Computation in Denmark. At
the workshop, Valentin Turchin presented a paper [34] on the first practical
whistle — a criterion to terminate driving and generalize a configuration. The
previous whistles were either too inefficient, or produce bad residual programs
in automatic mode, or required help from the user.

On Valentin Turchin’s Works 131

In 1989, under “perestroika”, Valentin Turchin resumed regular contacts with
his Russian disciples. From then on, he visited Russia together with his wife
almost every year, and intensive workshops were held in Moscow, Obninsk (1990)
and Pereslavl-Zalessky.

In the late 1980s, he wrote a draft book on supercompilation. However, it
remained unpublished, since he planed to improve it. The book contained the
description of the second version of supercompiler SCP2. The copies of the book
chapters were distributed among the participants of supercompilation workshop
in Obninsk in summer 1990.

In the early 1990s, he returned back to the idea of building a more powerful
supercompiler based on transformation of walk grammars. He restricted the
class of grammars to regular expressions (compared to the Report-80 [27]), and
presented the methods in paper [38]. However, they were not completed in form
of algorithms or strategies and are still waiting for further development.

In 1994, Andrei Nemytykh worked almost a year with Valentin Turchin and
they started development of the fourth version of a Refal supercompiler SCP4,
which was completed by Andrei during next years [13,14].

In 1995, Morten Heine Sorensen and Robert Gluck suggested [16] to use
a well-quasi-order on terms (homeomorphic embedding) as a whistle. Valentin
Turchin liked this method and since then suggested to use it as a primary whistle
in supercompilers. In particular, it was implemented in SCP4.

In 1996, Valentin Turchin wrote two last papers on supercompilation [40,41]
with an overview of achievements and his vision of future work.

A comprehensive bibliography of his works on supercompilation may be found
in [8].

Valentin Turchin always thought of putting supercompilation into practice.
In 1998 he raised an investment and founded Supercompilers, LLC, with the
goal of developing a Java supercompiler [10]. He was fond of this topic, but
unfortunately the Java supercompiler has not been completed yet.

In recent years we observe a burst of interest to supercompilation, which
Valentin Turchin dreamed about. The method of supercompilation has been
polished, simplified and improved by many researchers. A number of experimen-
tal supercompilers for simple languages has been developed. But that’s another
story.

7 Cybernetic Foundation of Mathematics

Another great scientific achievement by Valentin Turchin lies in the foundation
of mathematics. He was a constructivist in the spirit close to .. Markov. He said
that no actual infinity exists. There are just language models and potentially
infinite processes and enumerations. Like A.A. Markov, he sought to reduce all
mathematical concepts to constructive algorithmic ones. He was not confused by
the failure of the Markov’s constructive mathematics to express all mathematical
entities as algorithms. He saw the limitations of Markov constructive approach
in that it is a closed system incapable of evolution. By expressing everything in

132 Andrei V. Klimov

terms of deterministic algorithms, we have a world in which metasystem transi-
tions “degenerate”, “saturated”, cease to generate new quality.

Valentin Turchin managed to build an “open” constructive system by ex-
tending the world of algorithms with a model of the user of mathematics, a
mathematician. This is a metasystem transition similar to the appearance of the
concept of an observer in the modern physics. The wheels of his theory, referred
to as Cybernetic Foundation of Mathematics, model multiple metasystem tran-
sitions. In this theory, he actually demonstrated what are formal metasystem
transitions in action. As a result, he was able to give constructive interpretation
of the notion of a set and the Zermelo-Fraenkel axioms based on the extended
notion of an algorithm.

In 1983 he published a book on Cybernetic Foundations of Mathematics as
a university report [30]. After that, he squeezed the material to two articles that
have been accepted for publication in a journal, but with the condition that he
would reduce them to a single article [33]. Unfortunately, the published version
is badly readable due to excessive density of presentation. The full version is still
awaiting its publication and translation to Russian.

It is naturally to assume that Valentin Turchin planned to combine the works
on supercompilation and Cybernetic Foundation. He said he did not believe in
the fruitfulness of the methods of machine theorem proving based on logic infer-
ence, and sought for constructive approaches. Algorithmic definitions of mathe-
matical notions may become subject to manipulation and inference using meth-
ods similar to supercompilation. In turn, supercompilation can be enriched with
effective means of constructing proofs of statements about programs.

8 Further Development of Cybernetic Philosophy

In the 1990s, Valentin Turchin continued the work on cybernetic philosophy
together with Francis Heylighen and Cliff Joslyn. They founded the Principia
Cybernetica Project [9] with a goal to elaborate various philosophic and scien-
tific questions on the common cybernetic ground and to gather a community
of researchers interested in these topics. Unfortunately, after about a decade of
development the project became silent and wait for new enthusiasts.

In these years he also published several articles on the concept of the meta-
system transition [39], cybernetic ontology [36] and epistemology [37]. Further
discussion of these very interesting topics requires a separate paper.

9 Conclusion

The supercompilation history dates back for almost 40 years. Valentin Turchin
planed to get a program transformation tool to implement his further ideas on
manipulation of formal linguistic models. But the history moves much slower.
Now that we have several experimental supercompilers, it is clear that it was
impossible to implement such a system either on mainframes in the 1970s, or on
personal computers in 1980s. But now with modern computers, supercompiler

On Valentin Turchin’s Works 133

experiments became more and more successful. The time for such methods to
go into wide programming practice has come. Then the great challenge of mass
manipulation of formal linguistic models will come to the agenda, and someday
these methods will lead to the burst of automated construction of physical the-
ories, what Valentin Turchin dreamed about at the start of his scientific carrier.

Acknowledgements. I was very lucky to meet Valentin Turchin when I was
a schoolboy and to belong to a group of students who started their scientific
activity under his scientific mentorship. We became friends and professional
team-mates for life.

I am very grateful to those of them with whom we still collaborate on the
topics founded by our Teacher: Sergei Abramov, Arkady Klimov, Andrei Nemy-
tykh, Sergei Romanenko, as well as to young researches who joined the commu-
nity of Valentin Turchin’s disciples and generate new ideas: Sergei Grechanik,
Yuri Klimov, Ilya Klyuchnikov, Anton Orlov, Artem Shvorin, and to other par-
ticipants of the Moscow Refal seminars.

It’s a great pleasure for me to spend time together with Robert Glück, when
we have a chance to meet and study Valentin Turchin’s legacy and further de-
velop his ideas.

We are very glad to meet and discuss various computer science topics with
Neil D. Jones, who noticed Valentin Turchin’s works at the early stage and whose
deep scientific ideas and achievements have been influencing the works of our
team very much.

Finally I express our love and gratitude to Tatiana Turchin for all she has
been doing for us and for keeping alive the memory of Valentin Turchin.

References

1. S. M. Abramov. Metavychislenija i ikh prilozhenija (Metacomputation and its
applications). Nauka, Moscow, 1995. (In Russian).

2. O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation. Dagstuhl Castle,
Germany, February 1996, volume 1110 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

3. A. P. Ershov. On the essence of compilation. In E. Neuhold, editor, Formal
Description of Programming Concepts, pages 391–420. North-Holland, 1978.

4. Y. Futamura. Partial evaluation of computing process – an approach to a compiler-
compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

5. Y. Futamura. EL1 partial evaluator (progress report). Internal report submit-
ted to Dr. Ben Wegbreit, Center for Research in Computer Technology, Harward
University, Cambridge, MA, USA, January 24, 1973.

6. R. Glück and A. V. Klimov. Metacomputation as a tool for formal linguistic
modeling. In R.Trappl, editor, Cybernetics and Systems ’94, volume 2, pages 1563–
1570, Singapore, 1994. World Scientific.

7. R. Glück and A. V. Klimov. Metasystem transition schemes in computer science
and mathematics. World Futures: the Journal of General Evolution, 45:213–243,
1995.

134 Andrei V. Klimov

8. R. Glück and M. H. Sørensen. A roadmap to metacomputation by supercompila-
tion. In Danvy et al. [2], pages 253–275.

9. F. Heylighen, C. Joslyn, and V. F. Turchin. Principia Cybernetica Web. http:

//pespmc1.vub.ac.be.
10. A. V. Klimov. An approach to supercompilation for object-oriented languages:

the Java Supercompiler case study. In First International Workshop on Metacom-
putation in Russia, Proceedings. Pereslavl-Zalessky, Russia, July 2–5, 2008, pages
43–53. Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2008.

11. A. V. Klimov. O rabotakh Valentina Fedorovicha Turchina po kibernetike i
informatike (on Valentin Fedorovich Turchin’s works on Cybernetics and Infor-
matics). In A. Tomilin, editor, Proceedings of SORUCOM-2011, pages 149–154,
2011. http://sorucom.novgorod.ru/np-includes/upload/2011/09/05/15.pdf.
(In Russian).

12. I. G. Klyuchnikov and S. A. Romanenko. Towards higher-level supercompilation.
In A. Klimov and S. Romanenkop, editors, Second International Valentin Turchin
Memorial Workshop on Metacomputation in Russia, July 1-5, 2010, Pereslavl-
Zalessky, Russia, pages 82–101. Ailamazyan Program Systems Instiute of RAS,
2010. http://meta2010.pereslavl.ru/accepted-papers/paper-info-5.html.

13. A. P. Nemytykh. Superkompilyator SCP4: Obshchaya struktura (The Supercompiler
SCP4: General Structure). URSS, Moscow, 2007. (In Russian).

14. A. P. Nemytykh, V. Pinchik, and V. Turchin. A self-applicable supercompiler. In
Danvy et al. [2], pages 322–337.

15. A. D. Sakharov, R. A. Medvedev, and V. F. Turchin. A reformist program for
democratization. In S. F. Cohen, editor, An End to Silence. Uncensored Opinion
in the Soviet Union from Roy Medvedev’s Underground Magazine Political Diary,
pages 317–327. W. W. Norton & Company, New York, London, 1970. (Reprinted
1982).

16. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-
compilation. In J. W. Lloyd, editor, International Logic Programming Symposium,
December 4-7, 1995, Portland, Oregon, pages 465–479. MIT Press, 1995.

17. V. F. Turchin. Slow Neutrons. Israel Program for Scientific Translations,
Jerusalem, Israel, 1965.

18. V. F. Turchin. Metajazyk dlja formal’nogo opisanija algoritmicheskikh jazykov
(A metalanguage for formal description of algorithmic languages). In Cifrovaja
Vychislitel’naja Tekhnika i Programmirovanie, pages 116–124. Sovetskoe Radio,
Moscow, 1966. (In Russian).

19. V. F. Turchin. A meta-algorithmic language. Cybernetics, 4(4):40–47, 1968.
20. V. F. Turchin. Programmirovanie na jazyke Refal. (Programming in the language

Refal). Preprints 41, 43, 44, 48, 49, Institute of Applied Mathematics, Academy
of Sciences of the USSR, Moscow, 1971. (In Russian).

21. V. F. Turchin. Ehkvivalentnye preobrazovanija rekursivnykh funkcij na Refale
(Equivalent transformations of recursive functions defined in Refal). In Teorija
Jazykov i Metody Programmirovanija (Proceedings of the Symposium on the Theory
of Languages and Programming Methods), pages 31–42, 1972. (In Russian).

22. V. F. Turchin. Ehkvivalentnye preobrazovanija programm na Refale (Equiva-
lent transformations of Refal programs). Avtomatizirovannaja Sistema upravlenija
stroitel’stvom. Trudy CNIPIASS, 6:36–68, 1974. (In Russian).

23. V. F. Turchin. Refal-makrokod (Refal macrocode). In Trudy Vsesojuznogo
seminara po voprosam makrogeneratsii (Proceedings of the All-Union Seminar of
Macrogeneration), pages 150–165, 1975. (In Russian).

On Valentin Turchin’s Works 135

24. V. F. Turchin. The Phenomenon of Science: A Cybernetic Approach to Human
Evolution. Columbia University Press, New York, 1977.

25. V. F. Turchin. A supercompiler system based on the language REFAL. SIGPLAN
Not., 14(2):46–54, Feb. 1979.

26. V. F. Turchin. The language Refal, the theory of compilation and metasystem
analysis. Courant Computer Science Report 20, Courant Institute of Mathematical
Sciences, New York University, 1980.

27. V. F. Turchin. Semantic definitions in REFAL and automatic production of com-
pilers. In N. D. Jones, editor, Semantics-Directed Compiler Generation, volume 94
of Lecture Notes in Computer Science, pages 441–474. Springer-Verlag, 1980.

28. V. F. Turchin. The use of metasystem transition in theorem proving and program
optimization. In J. de Bakker and J. van Leeuwen, editors, Automata, Languages
and Programming, volume 85 of Lecture Notes in Computer Science, pages 645–
657. Springer-Verlag, 1980.

29. V. F. Turchin. The Inertia of Fear and the Scientific Worldview. Columbia Uni-
versity Press, 1981.

30. V. F. Turchin. The Cybernetic Foundation of Mathematics. Technical report, The
City College of the City Univeristy of New York, 1983.

31. V. F. Turchin. The concept of a supercompiler. Transactions on Programming
Languages and Systems, 8(3):292–325, 1986.

32. V. F. Turchin. Program transformation by supercompilation. In H. Ganzinger and
N. D. Jones, editors, Programs as Data Objects, volume 217 of Lecture Notes in
Computer Science, pages 257–281. Springer-Verlag, 1986.

33. V. F. Turchin. A constructive interpretation of the full set theory. The Journal of
Symbolic Logic, 52(1):172–201, 1987.

34. V. F. Turchin. The algorithm of generalization in the supercompiler. In D. Bjørner,
A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed Computation,
pages 531–549. North-Holland, 1988.

35. V. F. Turchin. Refal-5, Programming Guide and Reference Manual. New England
Publishing Co., Holyoke, Massachusetts, 1989.

36. V. F. Turchin. The cybernetic ontology of action. Kybernetes, 22(2):10–30, 1993.
37. V. F. Turchin. On cybernetic epistemology. Systems Research, 10(1):3–28, 1993.
38. V. F. Turchin. Program transformation with metasystem transitions. Journal of

Functional Programming, 3(3):283–313, 1993.
39. V. F. Turchin. A dialogue on metasystem transition. World Futures, 45:5–57, 1995.
40. V. F. Turchin. Metacomputation: Metasystem transitions plus supercompilation.

In Danvy et al. [2], pages 481–509.
41. V. F. Turchin. Supercompilation: techniques and results. In D. Bjørner, M. Broy,

and I. V. Pottosin, editors, Perspectives of System Informatics, Second Interna-
tional Andrei Ershov Memorial Conference, Akademgorodok, Novosibirsk, Russia,
June 25-28, 1996. Proceedings, volume 1181 of Lecture Notes in Computer Science,
pages 227–248. Springer, 1996.

42. V. F. Turchin, A. V. Klimov, A. V. Klimov, V. F. Khoroshevsky, A. G. Krasovsky,
S. A. Romanenko, I. B. Shchenkov, and E. V. Travkina. Bazisnyj Refal i ego
realizacija na vychislitel’nykh mashinakh (Basic Refal and its implementation on
computers). GOSSTROJ SSSR, CNIPIASS, Moscow, 1977. (In Russian).

43. V. F. Turchin, R. Nirenberg, and D. Turchin. Experiments with a supercompiler. In
Conference Record of the ACM Symposium on Lisp and Functional Programming,
pages 47–55. ACM Press, 1982.

Construction of Exact Polyhedral Model for
Affine Programs with Data Dependent

Conditions

Arkady V. Klimov

Institute of Design Problems in Microelectronics, Russian Academy of Sciences,
Moscow, Russia

arkady.klimov@gmail.com

Abstract. Parallelizing compilers usually build polyhedral model (PM)
for program parts which are referred to as static control parts (SCoP)
and normally include regular nested loops with bounds and array indices
being affine expressions of surrounding loop variables and parameters.
Usually, PM has the form of a parametric (depending on integer param-
eters) graph that connects all array reads with respective array writes.
Sometimes certain extensions of program class are allowed. We present
our graph representation language and our original way to build it. Our
buider allows for some dynamic control elements, e.g. arbitrary struc-
tured if with data dependent condition. Data dependent array indices
can be incorporated in similar way.
Our PM representation can be treated as a program, equivalent to the
original one, in a programming language with specific semantics. Two
different semantic definitions are proposed. The ordinary one is SRE,
System of Recursive Equations, and another, our original one, is DF, a
dataflow semantics which is in some sense inverse to SRE. In particular,
this means that our model is exact, whereas existing approaches yield
generally, for programs with dynamic control elements, only approxi-
mate, or fuzzy models (in the sense that they appoint to some read not
a specific write, but a set of possible writes).
As the PM carries the total semantics of the program, it can be used
with various purposes for analysis, transformation, equivalence testing,
etc. instead of original programs.

Keywords: polyhedral model, affine loop nests, data dependent con-
ditionals, recurrence equations, dataflow semantics, program analysis,
program transformation, equivalence testing

1 Introduction

The concept of polyhedral model (PM) appeared in the domain of automated
parallelization. Most modern parallelizing compilers use the polyhedral model
as an important source of information about the source program on behalf of
the ability of reordering or parallelizing statements. Unfortunately, the class of

Construction of Exact Polyhedral Model 137

programs for which the model can be built is strongly restricted. Normally, it
embraces affine loop nests with assignments in between, in which loop bounds
and array element indices are affine expressions of surrounding loop variables and
fixed structure parameters (array sizes etc.). If-statements with affine conditions
are also allowed. Methods of building exact polyhedral model are well developed
[3–6,18] for this class of programs.

The polyhedral model provides statement instance-wise and array element-
wise information on the dependences between all array element reads and array
element writes. The compiler usually wants to know whether there is a depen-
dence between given two statements under certain conditions. However, for the
use in program parallelization, this model generally does not need to be pre-
cise: the exact information flow is irrelevant and false positive dependences are
admissible.

In contrast, our aim is to totally convert the source program into the dataflow
computation model such that it could be executed in a suitable machine. Thus
we need the exact flow dependence information, and any kind of approximation
is unacceptable. But as we know exactly all flow (true) dependences, we may
ignore all other kinds of dependences, such as input, output, or anti-dependences.

When the source program is purely affine, the usual polyhedral model is exact
and sufficient for our purpose. In such a model for each instance of read (load)
operation there is an indication of the unique instance of write (store) operation
that has written the value being read. This indication is usually represented in
the form of a function (the so-called source function) that takes iteration vector
of the read (and structure parameters) and produces the name and the iteration
vector of a write or symbol ⊥ indicating that such writes do not exist and the
original state of memory is read.

However when the source program contains also one or several if-statements
with non-affine (e.g. data dependent) conditions the known methods suggest
only approximate model which identifies a set of possible writes for each read.
Authors usually refer such models as fuzzy [6]. In some specific cases their model
may provide a source function that uses as its input also values of predicates
associated with non-affine conditionals in order to produce the unique source.
As a rule these cases are those in which the number of such predicate values is
finite (uniformly bounded).

In contrast, we built for arbitrary affine program with non-affine conditionals
an exact and complete polyhedral model. Our model representation language is
extended with predicate symbols corresponding to non-affine conditions of the
source code. From such a model the exact source function for each read can be
easily extracted. The resulting source function depends generally on iteration
vector of the read and structure parameters as well as on an unlimited number
of predicate values.

But the source function is not our aim. Rather it is the complete dataflow
model, which can be treated, independently of the source program, as another
program in a dataflow computation model. From the parallelization perspec-
tive this program carries implicitly the maximum amount of parallelism that is

138 Arkady V. Klimov

reachable for the source program. A more detailed motivation and presentation
of our approach can be found in [12,13].

In this paper we describe our original way of building dataflow model for
affine programs and then show how it can be expanded to programs with non-
affine conditionals. The affine class and the concept of affine solution tree are
defined in Section 2. Sections 3–5 describe our algorithm of construction of the
PM. It comprises of several passes. The first pass building effects is described
in Section 3. In Section 3.1 we introduce the concept of statement effect and
define the process of its construction along the AST. Simultaneously we build a
resulting graph skeleton which is described in Section 3.2. Section 3.3 (together
with 5.2) describes our method of dealing with non-affine conditionals. Section 4
is about the second pass building states. In Section 4.1 we introduce the concept
of state and define the process of its computation along the AST. In Section
4.2 we use states to build all source functions comprising the source graph (S-
graph). In Section 5 we describe the third pass in which S-graph is inverted
(Section 5.1) into a use graph (U -graph) which allows for direct execution in the
dataflow computation model. Section 5.2 explains additional processing required
for non-affine conditionals. Several examples are presented in Section 6. Section 7
is devoted to possible applications of polyhedral model. Section 8 compares and
bridges our approach and achievements with those described in the literature.

2 Some Formalism

Consider a Fortran program fragment P , subroutine for simplicity. First of all,
we are interested in memory accesses that have the form of array element access
and are divided into reads and writes. Usually, in an assignment statement, there
are zero or several read accesses and a single write access. For simplicity and
without loss of generality we allow accesses only to an individual array element,
not to a whole array or subarray. Scalars are treated as 0-dimension arrays.

We define a computation graph by simply running the program P with some
input data. The graph consists of two kinds of nodes: reads and writes, corre-
sponding respectively to executions of read or write memory accesses. There is
a link from a write instance w to a read instance r if r reads the value written
by w. In other words, r uses the same memory cell as w and w is the last write
to this cell before r.

Now that our purpose is to obtain a compact parametric description of all
such graphs for a given program P , we consider a limited class of programs, for
which such a description is feasible. Such programs must fit the so-called affine
class, which can be formally defined by the set of constructors presented in
Fig.1. The right hand side e of an assignment may contain array element access
A(i1, . . . , ik), k ≥ 0. All index expressions as well as bounds e1 and e2 of do-loops
must be affine in surrounding loop variables and structure parameters. Affine
expressions are those built from variables and integer constants with addition,
subtraction and multiplication by literal integer. Also, in an affine expression,

Construction of Exact Polyhedral Model 139

Λ (empty statement)
A(i1, . . . , ik) = e (assignment, k ≥ 0)
S1; S2 (sequence)
if c then S1; else S2; endif (conditional)
do v= e1, e2; S; enddo (do-loop)

Fig. 1. Affine program constructors

we allow whole division by literal integer. Condition c also must be affine, i.e.
equivalent to e = 0 or e > 0 where e is affine.

Programs that satisfy these limitations are often called static control pro-
grams (SCoP) [6,7]. Their computation graph depends only on symbolic param-
eters and does not depend on dynamic data values. Further we remove the re-
striction that conditional expression c must be affine. Programs of the extended
class are usually called dynamic control programs (DCoP). We wont consider
programs with while-loops or non-affine array indices leaving it to future inves-
tigation.

A point in the computation trace of an affine program may be identified as
(s, Is), where s is a (name of a) point in the program and Is is the iteration
vector, that is a vector of integer values of all enclosing loop variables of point s.
The list of these variables will be denoted as Is, which allows to depict the point
s itself as (s, Is). (Here and below boldface symbols denote variables or list of
variables as syntactic objects, while normal italic symbols denote some values as
usual).

Thus, denoting an arbitrary read or write instance as (r, Ir) or (w, Iw) re-
spectively, we represent the whole computation graph as a mapping:

FP : (r, Ir) 7→ (w, Iw) (1)

which for any read node (r, Ir) yields the write node (w, Iw) that has written
the value being read, or yields ⊥ if no such write exist and thus the original
contents of the cell is read. In other words, it yields a source for each read. Thus
this form of graph is called a source graph, or S-graph.

However, for translation to our dataflow computation model we need the
reverse: for each write node to find all read nodes (and there may exist several
or none of them) which read the very value written. So, we need the multi-valued
mapping

GP : (w, Iw) 7→ {(r, Ir)} (2)

which for each write node (w, Iw) yields a set of all read nodes {(r, Ir)} that
read that very value written. We will refer to this form of computation graph as
a use graph, or U -graph.

A subgraph of S-graph (U -graph) associated with a given read r (write w)
will be referred to as an r-component (w-component).

For each program statement (or point) s we define the domain Dom(s) as
a set of values of iteration vector Is, such that (s, Is) occurs in the compu-

140 Arkady V. Klimov

tation. The following proposition summarizes the well-established property of
affine programs [4–7,15,18,23] (which is also justified by our algorithm).

Proposition 1. For any statement (s,Is) in affine program P its domain Dom(s)
can be represented as finite disjoint union

⋃
iDi, such that each subdomain Di

can be specified as a conjunction of affine conditions of variables Is and struc-
ture parameters, and, when the statement is a read (r, Ir), there exist such Di

that the mapping FP on each subdomain Di can be represented as either ⊥ or
(w, (e1, . . . , em)) for some write w, where each ei is an affine expression of vari-
ables Ir and structure parameters.

This property suggests the idea to represent each r-component of FP as a
solution tree with affine conditions at branching vertices and terms of the form
S{e1, . . . , em} or ⊥ at leaves. A similar concept of quasi-affine solution tree,
quast, was suggested by P. Feautrier [5].

A single-valued solution tree (S-tree) is a structure used to represent r-
components of a S-graph. Its syntax is shown in Fig.2. It uses just linear expres-
sions (L-expr) in conditions and term arguments, so a special vertex type was
introduced in order to implement integer division.

S-tree ::= ⊥
| term
| (L-cond→ S-treet : S-treef) (branching)
| (L-expr =: num var + var→ S-tree) (integer division)

term ::= name{L-expr1, . . . ,L-exprk} (k ≥ 0)
var ::= name
num ::= . . . | −2 | −1 | 0 | 1 | 2 | 3 | . . .
L-cond ::= L-expr = 0 | L-expr > 0 (affine condition)
L-expr ::= num | numvar + L-expr (affine expression)
atom ::= ⊥ | name{num1, . . . ,numk} (ground term, k ≥ 0)

Fig. 2. Syntax for single-valued solution tree

Given concrete integer values of all free variables of the S-tree it is possible
to evaluate the tree with a ground term as a result value. Here are evaluation
rules, which must be applied iteratively while it is possible.

A branching like (c → T1 : T2) evaluates to T1 if conditional expression c
evaluates to true, otherwise to T2.

A division (e =: mq + r → T) introduces two new variables (q, r) that take
respectively the quotient and the remainder of integer division of integer value
of e by positive constant integer m. The tree evaluates as T with parameter list
extended with values of these two new variables. Note that the whole tree does
not depend on variables q and r because they are bound variables.

It follows from Proposition 1 that for an affine program P the r-component
of the S-graph FP for each read (r, Ir) can be represented in the form of S-tree
T depending on variables Ir and structure parameters.

Construction of Exact Polyhedral Model 141

However the concept of S-tree is not sufficient for representing w-components
of U -graph, because those must be multi-valued functions in general. So, we
extend the definition of S-tree to the definition of multi-valued tree, M -tree, by
two auxiliary rules shown on Fig 3.

M-tree ::= . . . the same as for S-tree . . .
| (&M-tree1 . . .M-treen) (finite union, n ≥ 2)
| (@ var→ M-tree) (infinite union)

Fig. 3. Syntax for multi-valued tree

The semantics also changes. The result of evaluating M -tree is a set of atoms.
Symbol ⊥ now represents the empty set, and the term N{. . .} represents a
singleton.

To evaluate (&T1, . . . , Tn) one must evaluate sub-trees Ti and take the union
of all results. The result of evaluating (@v → T) is mathematically defined as
the union of infinite number of results of evaluating T with each integer value
v of variable v. In practice the result of evaluating T is non-empty only within
some bound interval of values v. In both cases the united subsets are supposed
to be disjoint.

Below we present the scheme of our algorithm of building a S-graph (Sections
3 and 4) and then a U -graph (Section 5).

3 Building Statement Effect

3.1 Statement Effect and its Evaluation

Consider a program statement S, which is a part of an affine program P , and
some k-dimensional array A. Let (wA, IwA) denote an arbitrary write operation
on an element of array A within a certain execution of statement S, or the
totality of all such operations. Suppose that the body of S depends affine-wise
on free parameters p1, . . . , pl (in particular, they may include variables of loops
surrounding S in P). We define the effect of S with respect to array A as a
function

EA[S] : (p1, . . . , pl; q1, . . . , qk) 7→ (wA, IwA) +⊥
that, for each tuple of parameters p1, . . . , pl and indices q1, . . . , qk of an element
of array A, yields an atom (wA, IwA) or ⊥. The atom indicates that the write
operation (wA, IwA) is the last among those that write to element A(q1, . . . , qk)
during execution of S with affine parameters p1, . . . , pl and ⊥ means that there
are no such operations.

The following statement is another form of Proposition 1: the effect can be
represented as an S-tree with program statement labels as term names. We shall
call them simply effect trees.

142 Arkady V. Klimov

Building effect is the core of our approach. Using S-trees as data objects we
implemented some operations on them that are used in the algorithm presented
on Fig.4. A good mathematical foundation of similar operations for similar trees
has been presented in [8].

The algorithm proceeds upwards along the AST from primitives like empty
and assignment statements. Operation Seq computes the effect of a statement
sequence from the effects of component statements. Operation Fold builds the
effect of a do-loop given the effect of the loop body. For conditional statement
with affine condition the effect is built just by putting the effects of branches
into the new conditional node.

EA[Λ] = ⊥ (empty statement)
EA[S1;S2] = Seq(EA[S1],EA[S2]) (sequence)
EA[LA : A(e1, . . . , ek) = e] = (assignments to A)

(q1 = e1 → . . . (qk = ek → LA{I} : ⊥) . . . : ⊥)
where I is a list of all outer loop variables

EA[LB : B(. . .) = e] = ⊥ (other assignments)
EA[if c then S1 else S2 endif] = (c→ EA[S1] : EA[S2]) (conditional)
EA[do v = e1, e2; S; enddo] = Fold(v, e1, e2,EA[S]) (do-loop)

Fig. 4. The rules for computing effect tree wrt k-dimensional array A

The implementation of function Seq is straight. To compute Seq(T1,T2) we
simply replace all ⊥ leaves in T2 with a copy of T1. The result is then be sim-
plified by a function Prune which prunes unreachable branches by checking the
feasibility of affine conjunctions (the check is known as Omega-test [18]).

The operation Fold(v, e1, e2, T), where v is a variable and e1 and e2 are affine
expressions, produces another S-tree T ′ that does not depend on v and represents
the following function. Depending on all other parameters of e1, e2 and T we find
the maximum value v of variable v in between values of e1 and e2, for which T
evaluates to a term t (not ⊥), and yield the term t for that value v as the result.
Building this T ′ usually involves the solution of parametric integer programming
problems (1-dimensional) and combining the results.

3.2 Graph Node Structure

In parallel with building the effect of each statement we also compose a graph
skeleton, which is a set of nodes with placeholders for future links. For each
assignment a separate node is created. At this stage the graph nodes are associ-
ated with AST nodes, or statements, in which they were created, for the purpose
that will be explained below in Section 4. The syntax (structure) of a graph node
description is presented in Fig.5.

Non-terminals ending with s usually denote an arbitrary number of its base
word (a repetition), e.g. ports signifies list of ports. A node consists of a header

Construction of Exact Polyhedral Model 143

node ::= (node (name context)
(dom conditions)
(ports ports)
(body computations)
)

context ::= names
condition ::= L-cond | TF-tree
port ::= (name type source)
computation ::= (eval name type expression destination)
source ::= S-tree | IN
destination ::= M-tree | OUT

Fig. 5. Syntax for graph node description

with name and context, domain description, list of ports that describe inputs
and a body that describes output result. The context here is just a list of loop
variables surrounding the current AST node. The domain specifies a condition
on these variables for which the graph node instance exists. Besides context
variables it may depend on structure parameters. Ports and body describe inputs
and outputs. The source in a port initially is usually an atom (or, generally, an S-
tree) depicting an array access (array name and index expressions), which must
be eventually resolved into a S-tree referencing other graph nodes as the sources
of the value (see Section 4.2). A computation consists of a local name and type
of an output value, an expression to be evaluated, and a destination placeholder
⊥ which must be replaced eventually by a M-tree that specifies output links (see
Section 5). The tag IN or OUT declares the node as input or output respectively.

Consider for example a statement S=S+A(i) of the summation program in
Fig.8a. The initial view of the corresponding graph node is shown in Fig.6. Note
that the expression in eval clause is built from the right hand side by replacing
all occurrences of scalar or array element references with their local names (that
became port names as well). A graph node for assignment usually has a single
eval clause that represents the generator of values written by the assignment.
Thereby a term of effect tree may be considered as a reference to a graph node
output.

(node (S1 i)
(dom (i ≥ 1)(i ≤ n))
(ports (s1 double S{}) (a1 double A{i}))
(body (eval S double (s1 + a1) ⊥))
)

Fig. 6. An initial view of graph node for statement S=S+A(i)

144 Arkady V. Klimov

3.3 Processing Non-affine Conditionals

When the source program contains a non-affine conditional statement S, special
processing is needed. We add a new kind of condition, a predicate function call,
or simply predicate, depicted as

namebool-const{L-exprs} (3)

that may be used everywhere in the graph where a normal affine expression can.
It contains a name, sign T or F (affirmation or negation) and a list of affine
arguments.

However, not all operations can deal with such conditions in argument trees.
In particular, the Fold cannot. Thus, in order that Fold can work later we perform
the elimination of predicates immediately after they appear in the effect tree of
a non-affine conditional statement.

First, we drag the predicate p, which is initially on the top of the effect tree
EA[S] = (p→ T1 : T2), downward to leaves. The rather straightforward process
is accomplished with pruning. In the result tree, TS , all copies of predicate p
occur only in downmost positions of the form (p → A1 : A2), where each Ai is
either term or ⊥. We call such conditional sub-trees atomic. In the worst case
the result tree will have a number of atomic sub-trees being a multiplied number
of atoms in sub-trees T1 and T2.

Second, each atomic sub-tree can now be regarded as an indivisible composite
value source. When one of Ai is ⊥, this symbol depicts an implicit rewrite of
an old value into the target array cell A(q1, . . . , qk) rather than just no write.
With this idea in mind we now replace each atomic sub-tree U with a new term
Unew{i1, . . . , in} where argument list is just a list of variables occurring in the
sub-tree U . Simultaneously, we add the definition of Unew in the form of a graph
node (associated with the conditional statement S as a whole) which is shown
in Fig.7. This kind of nodes will be referred to as blenders as they blend two
input sources into a single one. The domain of the new node is that of statement

(node (Unew i1 . . . in)
(dom Dom(S) + path-to-U -in-TS)
(ports (a t (p→ RW(A1) : RW(A2)))
(body (eval a t a⊥))
)

Fig. 7. Initial contents of the blender node for atomic subtree U in EA[S] = TS

S restricted by conditions on the path to the sub-tree U in the whole effect tree
TS . The result is defined as just copying the input value a (of type t). The most
intriguing is the source tree of the sole port a. It is obtained from the atomic sub-
tree U = (p→ A1 : A2). Each Ai is replaced (by operator RW) as follows. When
Ai is a term it remains unchanged. Otherwise, when Ai is ⊥, it is replaced with

Construction of Exact Polyhedral Model 145

explicit reference to the array element being rewritten, A(q1, . . . , qk). However, an
issue arises: variables q1, . . . , qk are undefined in this context. The only variables
allowed here are i1, . . . , in (and fixed structure parameters). Thus we need to
express indices q1, . . . , qk through known values i1, . . . , in.

To resolve this issue consider the list of (affine) conditions L on the path
to the subtree U in the whole effect tree TS as a set of equations connecting
variables q1, . . . , qk and i1, . . . , in.

Proposition 2. Conditions L specify a unique solution for values q1, . . . , qk de-
pending on i1, . . . , in.

Proof. Consider another branch Aj of subtree U , which must be a term. We
prove a stronger statement, namely, that given exact values of all free variables
occurring in Aj , Vars(Aj), all q-s are uniquely defined. The term Aj denotes
the source for array element A(q1, . . . , qk) within some branch of the conditional
statement S. Note, however, that this concrete source is a write on a single
array element only. Hence, array element indices q1, . . . , qk are defined uniquely
by Vars(Aj). Now recall that all these variables are present in the list i1, . . . , in
(by definition of this list). ut

Now that the unique solution does exist, it can be easily found by our affine
machinery. See Section 5 in which the machinery used for graph inversion is
described.

Thus, we obtain, for conditional statement S, the effect tree that does not
contain predicate conditions. All predicates got hidden within new graph nodes.
Hence we can continue the process of building effects using the same operations
on trees as we did in the purely affine case. Also for each predicate condition a
node must be created that evaluates the predicate value.

We shall return back to processing non-affine conditionals in Section 5.2.

4 Evaluation and Usage of States

4.1 Computing States

A state before statement (s, Is) in affine program fragment P with respect to
array element A(q1, . . . , qk) is a function that takes as arguments the iteration
vector Is = (i1, . . . , in), array indices (q1, . . . , qk) and values of structure param-
eters and yields the write (w, Iw) in the computation of P that is the last among
those that write to array element A(q1, . . . , qk) before (s, Is).

In other words this function presents an effect of executing the program from
the beginning up to the point just before (s, Is) wrt array A. It can be expressed
as an S-tree, which may be called a state tree at program point before statement
s for array A.

To compute state trees for each program point we use the following method.
So far for each statement B in an affine program fragment P we have com-

puted the S-tree EA[B] representing the effect of B wrt array A. Now we are to

146 Arkady V. Klimov

compute for each statement B the S-tree ΣA[B] representing the state before B
wrt array A.

For the starting point of program P we set

ΣA[P] = (q1 ≥ l1 → (q1 ≤ u1 → . . .A init{q1, . . .} . . . : ⊥) : ⊥) (4)

where term A init{q1, . . . , qk} signifies an untouched value of array element
A(q1, . . . , qk) and li, ui are lower and upper bounds of array dimensions (which
are only allowed to be affine functions of fixed parameters). Thus, (4) signifies
that all A’s elements are untouched before the whole program P .

The further computation of ΣA is described by the following production rules:

1. Let ΣA[B1;B2] = T . Then ΣA[B1] = T . The state before any starting part
of B is the same as that before B.

2. Let ΣA[B1;B2] = T . Then ΣA[B2] = Seq(T,EA[B1]). The state after the
statement B1 is that before B1 combined by Seq with the effect of B1.

3. Let ΣA[if c then B1 else B2 endif] = T . Then ΣA[B1] = ΣA[B2] = T .
The state before any branch of if-statement is the same as before the whole
if-statement.

4. Let ΣA[do v = e1, e2; B; enddo] = T . Then

ΣA[B] = Seq(T,Fold(v, e1, v−1,EA[B])) (5)

The state before the loop body B with the current value of loop variable v is
that before the loop combined by Seq with the effect of all preceding iterations
of B.

The last form (5) needs some comments. It is the case in which the upper limit
in the Fold clause depends on v. To be formally correct, we must replace all other
occurrences of v in the clause with a fresh variable, say v′. Thus, the resulting
tree will (generally) contain v, as it expresses the effect of all iterations of the
loop before the v-th iteration. The situation is much like that of

∫ x

0

f(x)dx.

Using the rules 1-4 one can achieve (and compute the state in) any internal point
of the program P (a point may be identified by a statement following it). For
speed, we do not compute the state wrt array X at some point if there are no
accesses to X within the current block after that point. Also, we compute only
once the result of Fold with a variable as the upper limit and then use the result
both for the effect of the whole loop and for the state at the beginning of the
body.

The following proposition limits the usage, within a state tree T , of terms
whose associated statements are enclosed in a conditional statement with non-
affine condition. It will be used further in Section 5.2.

Proposition 3. Let a conditional statement S with non-affine condition be at a
loop depth m within a dynamic control program P . Consider a state tree STp =

Construction of Exact Polyhedral Model 147

ΣA[p] in a point p within P w.r.t. an array A. Let A{i1, . . . , ik} be a term in STp,
whose associated statement, also A, is inside a branch of S. Then the following
claims are all true:

– m ≤ k,
– p is inside the same branch of S and
– indices i1, . . . , im are just variables of loops enclosing S.

Proof. Let A be a term name, whose associated statement A is inside a branch
b of a conditional statement S with non-affine condition. It is either assignment
to an array, say A, or a blender node emerged from some inner conditional (per-
forming a ”conditional assignment” to A). From our way of hiding predicate
conditions described in Section 3.3 it follows that the effect tree of S, EA[S], as
well as of any other statement containing S, will not contain a term with name
A. Hence, due to our way of building states from effects described above, this
is also true for the state tree of any point outside S, including the state STS
before the S itself. Now, consider the state STp of a point p within a branch b1
of S. (Below we’ll see that b1 = b). We have

STp = Seq(STS , STS−p), (6)

where STS−p is the effect of executing the code from the beginning of the branch
b1 to p (recall that the state before the branch b1, STb1 , is the same as STS
according to Rule 3 above). Consider a term A{i1, . . . , ik} in STp. As it is not
from STS , it must be in STS−p. Obviously, STS−p contains only terms associated
with statements of the same branch with p. Thus, b1 = b. And these terms are
only such that their initial m indices are just variables of m loops surrounding
S. Thus, given that the operation Seq does not change term indices, we have the
conclusion of Proposition 3. ut

4.2 Resolving Array Accesses

Now we shall use states before each statement to accomplish building the source
graph FP . Consider a graph node example shown on Fig.6. Initially, source
trees in ports clause contain terms denoting references to array element, like
A{e1, . . . , ek}. We want to resolve each such array access term into subtree with
only normal source terms. Recall that each graph node is associated with a
certain point p in the AST (that is, a statement, or the program point before
the statement) and that we already have a state ΣA[p]. Now we apply ΣA[p]
as a function to indices (e1, . . . , ek) and use the result as a replacement for the
term A{e1, . . . , ek}. As we do the application symbolically (just as a substitution
with subsequent pruning), the result will be a S-tree. Having expanded each
such array access term we get the port source tree in which all terms refer only
to other graph nodes. And the set of all port source trees in all graph nodes
comprises the source graph FP .

Recall that each graph node X has a domain Dom(X) which is a set of
possible context vectors. It is specified by a list of conditions, which are collected

148 Arkady V. Klimov

from surrounding loop bounds and if conditions. The list may contain also
predicate conditions. We write D⇒ p to indicate that the condition p is valid
in D (or follows from D). In case of a predicate condition p = pb{e1, . . . , ek}
it signifies that the list D just contains p (or contains some other predicate
p = pb{f1, . . . , fk} such that D⇒ (ei = fi) for all i = 1, . . . , k). For a S-graph
built so far the following proposition limits the usage of atoms A{. . .} for which
Dom(A) has predicate condition.

Proposition 4. Suppose that B is a regular node (not a blender) whose source
tree T contains a term A{i1, . . . , ik} (corresponding to an assignment to an array
A). Let Dom(A)⇒p, where p = pb{j1, . . . , jm} is a predicate condition. Then:

– m ≤ k,
– j1 = i1, . . . , jm = im, and all these are just variables of loops enclosing the

conditional statement with predicate p,
– Dom(B)⇒p.

Proof. As Dom(A)⇒ pb{j1, . . . , jm}, the predicate p denotes the condition of
a conditional statement S enclosed by m loops with variables j1, . . . , jm, and
this S contains the statement A in the branch b (by construction of Dom). The
source tree T was obtained by a substitution into the state tree before B, STB =
ΣA[B], which must contain a term A{i′1, . . . , i′k}. It follows, by Proposition 3,
that statement B is inside the same branch b (hence, Dom(B) ⇒ p), m ≤ k
and i′1, . . . , i

′
m are just variables j1, . . . , jm. However the substitution replaces

only formal array indices and does not touches enclosing loop variables, here
j1, . . . , jm. Hence i′1 = i1, . . . , i

′
m = im. ut

When B is a blender the assertion of the Proposition 4 is also valid but
Dom(B) should be extended with conditions on the path from the root of the
source tree to the term A{. . .}. The details are left to the reader.

5 Building the Dataflow Model

5.1 Building U-graph by Inverting S-graph: Affine Case

In dataflow computation model the data flow from source nodes to use nodes.
Thus, the generating node must know exactly which other nodes (and by which
port) need the generated value and sends the data element to all such node-port
pairs. This information, known also as use graph GP , is to be represented in the
form of destination M -trees in the eval clauses of graph nodes. Initially they are
all set to ⊥ as just placeholders.

Suppose the source program fragment P is purely affine. Having the source
graph FP in the form of affine S-trees in node ports, it is not difficult to produce
the inversion resulting in M -trees.

The graph is inverted path-wise: first, we split each tree into paths. Each
path starts with header term R{i1, . . . , in}, ends with term W{e1, . . . , em} and

Construction of Exact Polyhedral Model 149

has a list of affine conditions extended with quotient/remainder definitions like
(e =: kq+r) in between (k is a literal integer here). Only variables i1, . . . , in and
structure parameters can be used in affine expressions e, ei, New variables q
and r may be used only to the right of their definition. The InversePath operation
produces the inverted path that starts with header term W{j1, . . . , jm} with new
formal variables j1, . . . , jm, ends with term R{f1, . . . , fn} and has a list of affine
conditions and divisions in between. Also, universally quantified variables can
be introduced by clause (@v). All affine expressions fi are built with variables
j1, . . . , jm, structure parameters and q/r/@v-variables defined earlier in the list.
The inversion involves solving the system of linear Diophantine equations. In
essence, it can be viewed as a projection or variable elimination process. When
a variable cannot be eliminated it is simply introduced with @-clause.

In general, one or several paths can be produced. All produced paths are
grouped by new headers, each group being an M -tree for respective graph node,
in the form (& T1 T2 . . .) where each Ti is a 1-path tree. Further, the M -tree can
be simplified by the operation SimplifyTree. This operation also involves finding
bounds for @-variables, which are then included into @-vertices in the form:

(@v(l1u1)(l2u2) . . . T)

where li, ui are affine lower and upper bounds of i-th interval, and v must belong
to one of the intervals.

5.2 Inverting S-graph for Programs with Non-affine Conditionals

When program P has non-affine conditionals the above inversion process will
probably yield some M -trees with predicate conditions. Hence, a node with such
M -tree needs the value of the predicate as its input. However, this value may not
necessarily be needed always, and thus it may induce redundant dependences. So,
when a predicate vertex in M-tree does not dominate all term leaves, we should
cut the vertex off and create another node with the sub-tree as a destination
tree. Otherwise, we just add to the node a Boolean port connected to a predicate
evaluating node. We must do so repetitively until all predicates in M -trees refer
to Boolean-valued ports.

In either case some nodes need an additional port for the value of predicate.
We call such nodes filters. In the simplest case a filter has just two ports, one for
the main value and one for the value of the predicate, and sends the main value
to the destination when the predicate value is true (or false) and does nothing
otherwise.

Generally, the domain of each token and each node may have several func-
tional predicates in the condition list. Normally, a token has the same list of
predicates as its source and target nodes. However, sometimes these lists may
differ by one item. Namely, a filter node generates tokens with a longer predicate
list whereas the blender node makes the predicate list one item shorter compared
to that of incoming token. In the examples below arrows are green (dotted) or
red (dashed) depending on the predicate value.

150 Arkady V. Klimov

However, our aim is to produce not only U -graph, but both S-graph and
U -graph which must be both complete and mutually inverse. To simplify our
task we update the S-graph before inversion such that inversion does not pro-
duce predicates in M -trees. To achieve this we check for each port whether its
source node has enough predicates in its domain condition list. When we see
the difference, namely that the source node has less predicates, then we insert
a filter node before that port. And the opposite case, that the source has more
predicates, is impossible, as it follows immediately from Proposition 4.

6 Examples

A set of simple examples of a source program (subroutine) with the two resulting
graphs S-graph and U -graph are shown in Figs. 8,9,11. All graphs has been
built automatically in textual form and then redrawn manually in graphical
view. Nodes are rectangles or other shapes and data dependences are arrows
between them. Usually a node has several input and one output ports. A port
is usually identified as a point on node boundary. The domain is usually shown
once for a group of nodes with the same domain (at the up side in curly braces).
Those groups are separated by a dotted line. Each node should be considered as
a collection of instance nodes of the same type that differ in domain parameters
from each other. Arrows between nodes may fork depending on some condition
(usually it is affine condition of domain parameters), which is then written near
the start of the arrow immediately after the fork. When arrow enters a node
it carries a new context (if it has changed) written there in curly braces. The
simplest and purely affine example in Fig.8 explains the notations. Arrows in the
S-graph are directed from a node port to its source (node output). The S-graph

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

Fig. 8. Fortran program Sum (a), its S-Graph (b) and U -graph (c)

Construction of Exact Polyhedral Model 151

arrows can be interpreted as the flow of requests for input values. More exact
semantics will be described in Section 7.2.

In the U -graph, vice versa, arrows are directed from node output to some
node port. In contrast with the S-graph, they denote actual flow of data. U -graph
execution obeys semantic of dataflow computation model described in Section
7.3.

In the U -graph there also appears the need to get rid of zero-port nodes
which arise from assignments with no one read operation. We simply insert into
such nodes a dummy port which receives a dummy value. It looks as if we use,
in the right hand side of the assignment, a dummy scalar variable that is set
at the start of the program P . Thus a node Start, which generates a token for
node S1 (corresponding to the assignment S=0.0), appeared in the U -graph of
our example.

A simplest example with non-affine conditions is shown on Fig.9. The textual
view of graphs was generated automatically, whereas the graphical view was
drawn by hand.

When a source program contains a non-affine conditional, in the S-graph
there appears a new kind of node, the blender, depicted as a blue truncated
triangle (see Fig. 9b). Formally, it has a single port, which receives data from two
different sources depending on the value of the predicate. Thus, it has another
implicit port for Boolean value (on top). The main port arrows go out from side
edges; true and false arrows are dotted green and dashed red respectively. The
S-graph semantics of the blender is:

1. Invoke the predicate and wait for the result.
2. Depending on the result execute true (green) or false (red) branch.

Fig.8. Fortran program Sum (a), its S-Graph (b) and U-graph (c)

Fig.9. Fortran program Max (a) and its S-Graph (b) and U-graph (c)

Fig.11. Fortran program Bubble (a), and its S-Graph (b) and U-graph (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(c) (a) (b)

subroutine Max(X,n,R)
 real(8) X(n),R
 R=0.0
 do i = 1,n
 if R<X(i) then
 R=X(i)
 endif
 enddo
end

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

R2=X

i=n

R<X

{}

Start Xin(i)

R1=0

Rout

R

{1}

i<n

{i+1}

n=0
n>0

{i|1≤i≤n}

X

R2=X

{n}

R<X

{} {i|1≤i≤n}

Xin(i)

R1=0

Rout

Ri=1

{i-1}

n=0 n>0

i>1

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

(b) (a) (c)

n=0 A2

A2

j>1

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)
i>1

i=0

Z
A1

i=j
{i}

i>0

n>0

{n,i}

j=1

{0}

{0}

A1

{i-1,1}

{i-1,j-1}

{n,1}

{i,j+1}

i=1

i>j

{i,j|1≤i≤n,1≤j≤i}

A2

A2

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)

i=n

Z

A1

n=0

{j}

A1

{i+1,1}
{i+1,j+1}

{i,j-1}

{i,j|1≤i≤n,1≤j≤i}

i=0

i>0n>0

{1,1}

i<n
i=n

j>1

{i,i}

j=1

{0}

i<n

Fig. 9. Fortran program Max (a), its S-Graph (b) and U -graph (c)

In the U -graph the blender does not need a condition: in either case it receives
a value token on its unique port without knowing which node has sent it and
under which condition. However, when the source itself is not under the needed

152 Arkady V. Klimov

condition, a filter node must be inserted in between the source node and the
receiver port (it is shown in Fig.8c as an inverted yellow trapezoid). The predicate
value coming into a side edge and a circle at the entry point indicate that the
main value is passed when the condition is false.

The textual view of the blender from Fig.9 is shown in Fig.10. Note the
predicate FP1{i} on top of the S-tree of the unique port R. The S-tree contains
a reference to BR{i-1} under conjunction (FP1F{i})(i > 1). The backward data
arrow of the U -graph (in the M -tree of evalclause) goes through the filter node
FR1.R{i+1}.

(node (BR i)
(dom (1 ≤ i)(i ≤ n))
(ports (R double (FP1{i} → R2{i} : (i = 1→ R1{} : BR{i− 1}))))
(body (eval R double R(i = n→ R out{} : (&P1.R{i} FR1.R{i + 1})))

Fig. 10. The blender from example on Fig.9

A more complex and interesting example, a bubble sort program and its
graphs, is shown on Fig.11. In contrast with previous ones, the U -graph exhibits
high parallelism: its parallel time is 2n instead of n(n + 1)/2 for sequential
execution.

Fig.8. Fortran program Sum (a), its S-Graph (b) and U-graph (c)

Fig.9. Fortran program Max (a) and its S-Graph (b) and U-graph (c)

Fig.11. Fortran program Bubble (a), and its S-Graph (b) and U-graph (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(c) (a) (b)

subroutine Max(X,n,R)
 real(8) X(n),R
 R=0.0
 do i = 1,n
 if R<X(i) then
 R=X(i)
 endif
 enddo
end

subroutine Sum(X,n,S)
 real(8) X(n),S
 S=0.0
 do i = 1,n
 S=S+X(i)
 enddo

 end

(c) (a) (b)

X

R2=X

i=n

R<X

{}

Start Xin(i)

R1=0

Rout

R

{1}

i<n

{i+1}

n=0
n>0

{i|1≤i≤n}

X

R2=X

{n}

R<X

{} {i|1≤i≤n}

Xin(i)

R1=0

Rout

Ri=1

{i-1}

n=0 n>0

i>1

X

S2=S+X

{}

Start Xin(i)

S1=0

Sout

S
{1}

{i+1}

n=0
n>0

{i|1≤i≤n}

i<n i=n

X

S2=S+X

{}

Xin(i)

S1=0

Sout

S

{}

{i-1}

{i|1≤i≤n}

i>1

{n}

n=0 n>0

i=1

(b) (a) (c)

n=0 A2

A2

j>1

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)
i>1

i=0

Z
A1

i=j
{i}

i>0

n>0

{n,i}

j=1

{0}

{0}

A1

{i-1,1}

{i-1,j-1}

{n,1}

{i,j+1}

i=1

i>j

{i,j|1≤i≤n,1≤j≤i}

A2

A2

A1<A2

{i|0≤i≤n}

Ain(i)

Aout(i)

i=n

Z

A1

n=0

{j}

A1

{i+1,1}
{i+1,j+1}

{i,j-1}

{i,j|1≤i≤n,1≤j≤i}

i=0

i>0n>0

{1,1}

i<n
i=n

j>1

{i,i}

j=1

{0}

i<n

Fig. 11. Fortran program Bubble (a), its S-Graph (b) and U -graph (c)

Construction of Exact Polyhedral Model 153

7 Properties and Usage of Polyhedral Model

7.1 General Form of Dataflow Graph

We start from the purely static control graph, which is a set of nodes with syntax
shown in Fig. 5. In this form both the S-graph and the U -graph are presented.
Ignoring destination trees in eval clauses we get the S-graph, ignoring source
trees in ports we get the U -graph. Both graphs represent the same dependence
relation. It means that the respective set of trees must be mutually inverse.
Recall that source trees representing the S-graph are S-trees (single-values),
while destination trees forming the U -graph are M -trees (multi-valued).

Then we introduce a special kind of node called a predicate which produces
a Boolean condition. This value is used directly by source tree of a blender,
which is an identity node with a single port with the source tree of the form
(p→ T1 : T2), where predicate condition p has the form (3).

As we avoid predicate conditions appearing in destination trees, we introduce
filter nodes, which are in some sense inverse to blenders. Conceptually, filter is
an identity node with the usual input port and the destination tree of the form
(p→ Tout : ⊥). But instead of predicate condition p of the form pb{e1, . . . , ek},
we add a port named p with atom P{e1, . . . , ek} as a source tree and either
(p → Tout : ⊥) or (p → ⊥ : Tout) as a destination tree. Thus filter is used as a
gate which is open or closed depending on the value on port p: the gate is open,
if the value is b, otherwise closed. Note that filters are necessary in U -graph, but
not in S-graph.

The S-graph must satisfy the two following constraints. The first is a con-
sistency restriction. Consider a node X{I} with domain DX and a source tree
T . Let I ∈ DX. Then T (I) is some atom Y{J} such that J ∈ DY. The second
constraint requires that the S-graph must be well-founded, which means that no
one object node X{I} may transitively depend on itself.

7.2 Using the S-graph as a Program

The S-graph can be used to evaluate output values given all input values. Also,
all structure parameters must be known. We assume that each node produces
a single output value (otherwise atom names in source trees should refer to a
node-output pair rather than just a node).

Following [6] we transform the S-graph into a System of Recurence Equa-
tions (SRE), which can be treated as a recursive functional program. Each node
of S-graph is presented as definition of recursive function whose arguments are
context variables. Its right hand side is composed of a body expression with
ports as calls to additional functions, whose right hand sides in turn are ob-
tained from their source trees with atoms and predicates as function calls. Input
nodes are functions defined elsewhere. In Fig.12 is presented a simplified SRE
for the S-graph from Fig.9b. Execution starts with invocation of the output
node function. Evaluation step is to evaluate the right hand side calling other

154 Arkady V. Klimov

P(i) = R(i) < X(i)
B(i) = if P(i) then X(i) else R(i)
R(i) = if i = 1 then R1() else if i > 1 then B(i− 1) else ⊥
R1() = 0
Rout = if n = 0 then R1() else if N > 0 then B(n) else ⊥

Fig. 12. System of Recurrent Equations equivalent to S-graph on Fig.9b

invocations recursively. For efficiency it is worth doing tabulation so that neither
function call is executed twice for the same argument list.

Note, that both the consistency and the well-foundedness conditions together
provide the termination property of the S-graph program.

7.3 Computing the U-graph in the Dataflow Computation Model

The U -graph can be executed as program in the dataflow computation model.
A node instance with concrete context values fires when all its ports get data
element in the form of data token. Each fired instance is executed by computing
all its eval clauses sequentially. All port and context values are used as data
parameters in the execution. In each eval clause the expression is evaluated, the
obtained value is assigned to a local variable and then sent out according to the
destination M -tree. The tree is executed in an obvious way. In the conditional
vertex, the left or right subtree is executed depending on the Boolean value of the
condition. In &-vertices, all sub-trees are executed one after another. An -vertex
acts as a do-loop with specified bounds. Each term of the form R.x{f1, . . . , fn}
acts as a token send statement, that sends the computed value to the graph
node R to port x with the context built of values of fi. The process stops when
all output nodes get the token or when all activity stops (quiescence condition).
To initiate the process, tokens to all necessary input nodes should be sent from
outside.

7.4 Extracting Source Functions from S-graph

There are two ways to extract the source function from the S-graph. First, we
may use the S-graph itself as a program that computes the source for a given
read when the iteration vector of the read as well as values of all predicates
are available. We take the SRE and start evaluating the term R(i1, . . . , in),
where i1, . . . , in are known integers, and stop as soon as some term of the form
W (j1, . . . , jm) is encountered (where W is a node name corresponding to a write
operation and j1, . . . , jm are some integers).

Also, there is a possibility to extract the general definition of the source func-
tion for a given read in a program. We may do it knowing nothing about predi-
cate values. We start from the term R{i1, . . . , in} where i1, . . . , in are symbolic
variables and proceed unfolding the S-graph symbolically into just the S-tree.
Having encountered the predicate node we insert the branching with symbolic

Construction of Exact Polyhedral Model 155

predicate condition (without expanding it further). Having encountered a term
W{e1, . . . , em} we stop unfolding the branch. Proceeding this way we will gen-
erate a possibly infinite S-tree representing the source function in question. If
were lucky the S-tree will be finite. It seems that, in previous works on building
polyhedral models for programs with non-affine if-s [6, 7], the exact result is
produced only when the above process stops with a finite S-tree as a result.

But we can also produce a good result even when the generated S-tree is
infinite (note, that this is the case in examples Max and Bubble). Having en-
countered a node already visited we generalize, i.e. cut-off the earlier generated
sub-tree from that node replacing it with invocation of another function and
schedule the generation of a new function starting from that node. The process
converges to a set of mutually recursive function definitions that implements the
source function in the most unalloyed form.

The process we have just described is a particular case of the well known
supercompilation [10,17,19,21]. In a more general setting this concept can provide
a very elaborate and productive tool for transforming programs represented in
the dataflow (or polyhedral) model. An interesting open issue is to invent a good
whistle and generalization strategy for a supercompiler that deals with polyhedral
configurations.

7.5 Analysis

The polyhedral model may be used for various purposes. Many useful properties
of original programs can be detected. Here are some examples: array bounds
checks, dead/unused code detection and feasible parallelism. Various questions
can be studied by means of abstract interpretation of the polyhedral model
instead of the original program.

7.6 Transformations

Initially our compiler generates a very fine grained graph in which a node cor-
responds to a single assignment, or condition expression, or it is a blender or a
filter. Thus, it is a good idea to apply a coagulation transformation, that takes,
say, a Bubble program U -graph shown in Fig.11(c), and produces a more coarse
grained data flow graph as shown in Fig.13(b). Within coagulation, several small
nodes are combined into a large single node. The body of a resulting node is a
fusion of bodies of original nodes. Data transfer between original small nodes
transforms into just variable def and use within the body of the resulting node.
This code can be efficiently evaluated on a special multiprocessor system.

In Fig.13(c) is shown the computation graph for n = 4. Each node instance is
marked with its context values. Here one can see clearly the possible parallelism.

A form of coagulation is vectorization. It involves gluing together several
nodes of the same type. This transformation is the analogue of tiling for affine
loop programs.

An inverse to coagulation, atomization, can also be useful. For example, it is
beneficial before testing equivalence.

156 Arkady V. Klimov

Fig.13. Fortran program Bubble (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

Fig.14. Fortran program Bubble2 (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

subroutine Bubble2(A,n)
 real(8) A(0:n),Z
 do i=1,n
 do j=i,1,-1
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

A(0) A(1) A(2) A(3) A(4)

4,1 4,2 4,3 4,4

3,1 3,2 3,3 A(3)

A(4)

2,1 2,2 A(2)

1,1 A(1)

A(0)
Aout(i)

{0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=j

A2

Ain(i)

{i,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{i}

i>j

{n,1}

{n,i}

j=1
j>1

{i-1,1}

i>1

{i-1,j-1}

i=1

{0}

{i,j|1≤i≤n,1≤j≤i}

{i|0≤i≤n}

{i|0≤i≤n}

Aout(i){0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=n

A2 {i,j|1≤i≤n,1≤j≤i}

Ain(i)

{i+1,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{j}

i<n

{1,1}

{i,i}

j=1
j>1

{i|0≤i≤n}

{i+1,1}

i<n

{i,j-1}

i=n

{0}

{i|0≤i≤n}

A(0) A(1) A(2) A(3) A(4)

1,1 2,2 3,3 4,4

2,1 3,2 4,3 A(3)

A(4)

3,1 4,2 A(2)

4,1 A(1)

A(0)

Fig. 13. Fortran program Bubble (a), its coagulated U -Graph (b) and the graph ex-
pansion for n = 4 (c)

7.7 Equivalence Testing

The S-graph form can be used for testing two affine programs for equivalence.
Consider, for example, another version of bubble sort program, Bubble2, shown
on Fig.14(a), its coagulated U -graph (b) and respective computation graph for
n = 4 (c). It is easy to see that the computation graphs of both programs Bubble
and Bubble2 are essentially the same: they differ only in the way of numbering
the nodes. To prove it one needs to find the affine mapping of contexts that
would make the graphs equal.

Fig.13. Fortran program Bubble (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

Fig.14. Fortran program Bubble2 (a), its coagulated U-Graph (b)

and the graph expansion for n=4 (c)

subroutine Bubble2(A,n)
 real(8) A(0:n),Z
 do i=1,n
 do j=i,1,-1
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

subroutine Bubble(A,n)
 real(8) A(0:n),Z
 do i=n,1,-1
 do j=1,i
 if A(j-1)<A(j) then
 Z=A(j)
 A(j)=A(j-1)
 A(j-1)=Z
 endif
 enddo
 enddo
end

(a) (b) (c)

A(0) A(1) A(2) A(3) A(4)

4,1 4,2 4,3 4,4

3,1 3,2 3,3 A(3)

A(4)

2,1 4,2 A(2)

1,1 A(1)

A(0)
Aout(i)

{0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=j

A2

Ain(i)

{i,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{i}

i>j

{n,1}

{n,i}

j=1
j>1

{i-1,1}

i>1

{i-1,j-1}

i=1

{0}

{i,j|1≤i≤n,1≤j≤i}

{i|0≤i≤n}

{i|0≤i≤n}

Aout(i){0}

if A1<A2

R1=A1

R2=A2

else

R1=A2

R2=A1 i=n

A2 {i,j|1≤i≤n,1≤j≤i}

Ain(i)

{i+1,j+1}

A1

i>0i=0 n>0

n=0

R1

R2

{j}

i<n

{1,1}

{i,i}

j=1
j>1

{i|0≤i≤n}

{i+1,1}

i<n

{i,j-1}

i=n

{0}

{i|0≤i≤n}

A(0) A(1) A(2) A(3) A(4)

1,1 2,2 3,3 4,4

2,1 3,2 4,3 A(3)

A(4)

3,1 4,2 A(2)

4,1 A(1)

A(0)

Fig. 14. Fortran program Bubble2 (a), its coagulated U -Graph (b) and the graph
expansion for n = 4 (c)

Construction of Exact Polyhedral Model 157

Generally we need a regular procedure to establish equivalence of two polyhe-
dral graphs. A good relevant procedure is presented in [22]. It allows for graphs
which have a generalized form of static control dependence graph with affine
dependences. Graph vertices are adorned by abstract operation symbols with
single output. Thus, strictly speaking within their approach our example is not
tractable: if we use coagulated form (as in Figs. 13-14) then the node function
with two outputs R1 and R2 does not meet the requirement of a single output,
and if we consider atomistic form (as in Fig.11) then the property of static con-
trol does not hold. Perhaps the first problem is just technical and the approach
can be easily generalized. However, data dependent conditions generally cannot
be easily eliminated. So, we want to generalize the approach of [22] to admit
some restricted dynamic control.

Since our work is not yet finished, we just describe here the variety of dynamic
control graphs which we want to be allowed (Section 7.1 above).

In our terms, the equivalence testing procedure deals with a pair of S-graphs.
Following [22], it starts from output nodes denoting values of output arrays, and
tries to prove that the respective values are computed by essentially the same
function compositions from values of input nodes. When a predicate condition,
p, is encountered in a source tree, the predicate value is ’requested’ and the result
is used symbolically for the selection of the source. Thus, a split appears in the
proof three due to the unknown predicate value. Now we expand the equivalence
testing procedure from [22], so as to correctly deal with such splits.

8 Related Work

In this Section we compare our approach with other attempts of building poly-
hedral models for affine programs with non-affine conditionals.

The foundations of dependence (data flow) analysis for arrays have been well
established in the 90-s by Feautrier [4–6], Pugh [18], Collard and Griebl [3, 7],
Maslov [15] and others [9, 16]. Their methods use the Omega test and Integer
Programming libraries and yield an exact solution for dependence between any
pair of read and write references in affine program. Thus in the pure affine case
our work adds almost nothing more (except that we use the resulting polyhe-
dral model further to produce a program in the dataflow computation model).
However in the case of affine programs extended with non-affine conditions (the
so-called dynamic control programs), the state-of-the-art is to yield in the gen-
eral case a fuzzy solution [6]. It is fuzzy in the sense that the source function
produces a set of possible sources, not the unique and exact source. The authors
claim that it is the best that can be done. But it seems that the claim proceeds
from assumption that the result should be represented in the form of the finite
quasi-affine solution tree (quast). And as we have seen in Section 7.4, generally
the source function can be represented as a finite or infinite quast, but it can
always be represented as a finite S-graph.

Our base affine machinery of building the exact S-graph also differs. Whereas
it is a common practice to build the polyhedral model by considering each read-

158 Arkady V. Klimov

write pair independently, our method of building a dataflow model first produces
effects and then states using only writes, and then resolves all reads against
states. It is interesting to notice a similarity between our effect/state building
process and the process of backward traversing the control flow graph presented
in [3,7] which fail, in general, to produce exact (not fuzzy) results. Both processes
are moving along the same path but in opposite directions. The authors usually
argue for moving backward noticing that the process can stop when the total
source is found (cf. also [15]). It is a good idea, and it can be incorporated into
our algorithm simply by porting it to a lazy language, e.g. to Haskell, or by
somehow emulating the laziness. In the lazy setting, the tree T will not be built
at all in applications like Seq(T, t), where t is a term (or a ⊥-less tree).

Speaking of parallelization, one must not forget about the distribution of
computations in space and time. On this subject, there are many works in which
an optimal (in terms of communications volume and load balancing) mapping
in multidimensional space and time is sought, and then on its basis an inverse
translation into a loop nest program with parallel loops is made [1, 7]. In our
dataflow computational model the knowledge of the distribution functions, al-
though not mandatory, can significantly improve the efficiency of execution. The
project of a real multiprocessor that can directly execute the dataflow model is
being developed in our institute IDPM RAS [2,14,20].

9 Conclusion

Our aim was to build the converter of a program P that belongs to a specific class
into the dataflow computation model. Thus we need not only to build the exact
and complete data flow model (which is usually referred to as the polyhedral
model and comprises of exact source functions for each read operation in the
program P), but also to invert it and thus obtain the exact use function for each
write operation. The latter representation can be used as an equivalent program
in a specific dataflow computation model, in which the maximum parallelism
inherent to program P is exhibited. At the present time, the described machinery
is implemented in a prototype translator which is written totally in the functional
language Refal, version 6 [11]. Currently, it admits as input an arbitrary affine
program extended with non-affine conditions in if-statements (provided that
unlimited computing resources are available).

However, the intermediate source graph also appears interesting. It can also
be treated as an independent semantic representation of the input program,
namely, the SRE. Partially evaluating the SRE one can use it as an exact source
function definition, that is evaluate the write statement of input program that
wrote the value being read by the given read statement. Or one can produce a
more refined form of the source function for a given read operation. Note that
all this is possible for arbitrary affine programs with non-affine conditionals.

The work was supported by Russian Academy of Sciences Presidium Program
for Fundamental Research ”Fundamental Problems of System Programming” in
2009–2013.

Construction of Exact Polyhedral Model 159

References

1. Uday Bondhugula, Muthu Manikandan Baskaran, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the polyhe-
dral model. In Laurie J. Hendren, editor, CC, volume 4959 of Lecture Notes in
Computer Science, pages 132–146. Springer, 2008.

2. V.S. Burtsev. ”Vybor novoj sistemy organizacii vypolneniya vysokoparallelnyh vy-
chislitelnyh processov, primery vozmozhnyh arhitekturnyh reshenij postroeniya su-
perEVM” (The choice of a new organization system of execution of highly-parallel
computation processes and examples of possible supercomputer architecture so-
lutions). In V.S. Burtsev, editor, Parallelizm vychislitelnyh processov i razvitie
arhitektury superEVM, pages 41–78. IVVS RAS, Moscow, 1997.

3. Jean-Francois Collard and Martin Griebl. A precise fixpoint reaching definition
analysis for arrays. In Proceedings of the 12th International Workshop on Lan-
guages and Compilers for Parallel Computing, LCPC ’99, pages 286–302, London,
UK, UK, 2000. Springer-Verlag.

4. Paul Feautrier. Parametric integer programming. RAIRO Recherche Opération-
nelle, 22:243–268, 1988.

5. Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–53, 1991.

6. Paul Feautrier. Array dataflow analysis. In Santosh Pande and Dharma P.
Agrawal, editors, Compiler Optimizations for Scalable Parallel Systems, pages 173–
219. Springer-Verlag New York, Inc., New York, NY, USA, 2001.

7. Martin Griebl. Automatic parallelization of loop programs for distributed memory
architectures. Habilitation thesis, Department of Informatics and Mathematics,
University of Passau, 2004.

8. S.A. Guda. Operations on the tree representations of piecewise quasi-affine func-
tions. ”Informatika i ee primeneniya” (Informatics and its applications), 7(1):58–
69, 2013.

9. Gautam Gupta and Sanjay V. Rajopadhye. The Z-polyhedral model. In Kather-
ine A. Yelick and John M. Mellor-Crummey, editors, Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2007, San Jose, California, USA, March 14-17, 2007, pages 237–248.
ACM, 2007.

10. Andrei V. Klimov. An approach to supercompilation for object-oriented languages:
the Java Supercompiler case study. In First International Workshop on Metacom-
putation in Russia, Proceedings. Pereslavl-Zalessky, Russia, July 2–5, 2008, pages
43–53. Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2008.

11. Ark.V Klimov. Refal-6. URL: http://refal.net/ arklimov/refal6/index.html, 2004.
12. Ark.V. Klimov. The use of selection trees for describing states in paral-

lelizing compiler. In Proceedings of All-Russian Scientific Conference Scien-
tific service in Internet, pages 238–240. Moscow, MSU Press, 2009. URL:
http://agora.guru.ru/abrau2009/pdf/238 NSSI 2009 Abrau-2009.pdf.

13. Ark.V. Klimov. Transforming affine nested loop programs to dataflow computation
model. In Ershov Informatics Conference, PSI Series, 8-th edition, Preliminary
Proceedings, June, 27 July, 1, pages 274–285, Akademgorodok, Novosibirsk, Rus-
sia, 2011.

14. Ark.V. Klimov, N.N. Levchenko, S.A. Okunev, and A.L. Stempkovsky. Supercom-
puters, memory hierarchy and dataflow computation model. Program systems:
theory and applications, 5(1):15–36, 2014.

160 Arkady V. Klimov

15. Vadim Maslov. Lazy array data-flow dependence analysis. In Hans-Juergen Boehm,
Bernard Lang, and Daniel M. Yellin, editors, Conference Record of POPL’94: 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, USA, January 17-21, 1994, pages 311–325. ACM Press, 1994.

16. Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact
data dependence analysis. In David S. Wise, editor, Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages 1–14. ACM, 1991.

17. Andrei P. Nemytykh, Victoria Pinchik, and Valentin Turchin. A self-applicable
supercompiler. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evalua-
tion. Dagstuhl Castle, Germany, February 1996, volume 1110 of Lecture Notes in
Computer Science, pages 233–252. Springer-Verlag, 1996.

18. William Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Joanne L. Martin, editor, SC, pages 4–13. IEEE
Computer Society / ACM, 1991.

19. Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive supercom-
piler. Journal of Functional Programming, 6(6):811–838, 1996.

20. A.L. Stempkovsky, N.N. Levchenko, S.A. Okunev, and V.V. Tsvetkov. Paral-
lel dataflow computing system the further development of architecture and the
structural organization of the computing system with automatic distribution of
resources. Informatsionnye tekhnologii, (10):2–7, 2008.

21. Valentin F. Turchin. Program transformation by supercompilation. In Harald
Ganzinger and Neil D. Jones, editors, Programs as Data Objects, volume 217 of
Lecture Notes in Computer Science, pages 257–281. Springer, 1985.

22. Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking
of static affine programs using widening to handle recurrences. In Ahmed Bouajjani
and Oded Maler, editors, CAV, volume 5643 of Lecture Notes in Computer Science,
pages 599–613. Springer, 2009.

23. V.V. Voevodin and Vl.V. Voevodin. ”Parallel’nyje vychislenija” (Parallel compu-
tations). BKhV-Peterburg, St. Petersburg, 2004.

Nullness Analysis of Java Bytecode via
Supercompilation over Abstract Values?

Ilya G. Klyuchnikov

JetBrains; Keldysh Institute of Applied Mathematics of RAS

Abstract. Code inspections in the upcoming release of IntelliJ IDEA
take into account how binary Java libraries used in a project deal with
null references. For this purpose Java libraries are annotated with results
of nullness analysis under the hood. The paper reveals one of several non-
trivial technical aspects of nullness analysis of Java binaries performed
by IDEA: supercompilation over abstract values. A case study project
Kanva-micro – a tool for inference of @NotNull method parameters –
is used to illustrate this aspect step-by-step. A method parameter is
annotated by Kanva-micro as @NotNull if the method cannot complete
normally when null is passed to this parameter. The source code of
Kanva-micro’s core is provided and explained in details. The paper may
also serve as a tutorial on using supercompilation methods for program
analysis.

1 Introduction

This paper starts a series of tutorial papers explaining details of how nullness
analysis of Java bytecode is implemented in the upcoming IntelliJ IDEA 14
release. The papers are organized around two self-sufficient ready-to-run tutorial
projects:

– The Kanva-micro project [8] focuses on the essence of the method (super-
compilation over abstract values) at the cost of simplifications.

– The Faba project [4] is about how this method may be implemented in a
production system.

The current paper describes the Kanva-micro project step-by-step.

1.1 Nulls in Java, richer type systems and the problem of
interoperability

The majority of mainstream programming languages (including Java program-
ming language) allow null references (null in Java). Dereference of null results
into a runtime error. Tony Hoare, the creator of null, has stated that the null

was “the billion dollar mistake” in the language design.

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

162 Ilya G. Klyuchnikov

Ironically, compile-time checks performed by compilers of statically typed
languages are to guarantee the absence of runtime errors if code compiles, and
null pointer errors are not covered by these checks in major mainstream lan-
guages.

Dereference of null results into NullPoiterException in Java.
There are practical alternatives to enjoy null safety when programming for

JVM:

– Migrate to alternative JVM language with nullable types such as Kotlin [9]
or Ceylon [2].

– Enrich Java code with nullity annotations like @NotNull and @Nullable

and use additional tools to check such annotations. There are several tools
understanding nullity annotations: Eclipse Java compiler with additional
null analysis [3], null analysis inspections in IntelliJ IDEA [6], the Checker
framework [10].

Anyway, a Java programmer enjoys null safety only when working in a new
richer type system. When there is a need to use existing Java libraries, the
problem of null references appears on the boundary of two worlds. There is no
clear practical way to make use of Java libraries completely null safe. However,
it is possible to infer some nullity information automatically to make use of Java
libraries safer.

1.2 The task

Some null analysis tools, including IntelliJ IDEA and the Checker framework, al-
low to use external annotations that are stored separately from library bytecode.
The Kotlin compiler allows to specify external annotations as well. So inference
of such annotations is of practical usage.

Kanva-micro [8] focuses on inference of @NotNull annotations for method
parameters. A method parameter is annotated as @NotNull if in any situation
when null is passed to this parameter the method cannot complete normally.
Practically, it means that an author of this library method doesn’t expect null
to be passed to this parameter. From a client’s point of view this is the same as
the author put explicit @NotNull annotation in original source code.

The task of Kanva-micro is to automatically infer such external annotations
for Java libraries. The phrase “in any situation” in the previous paragraph is
significant: inferred annotations should not forbid to use a library. A @NotNull

annotation is considered incorrect if under some conditions when null is passed
to this parameter, the method completes normally.

There are no problems with the following @NotNull annotation: all possible
executions result in NullPointerException when view is null.

1 void loadConfig(@NotNull View view) {
2 File f = getConfigFile();
3 if (f != null) {
4 view.loadConfigFromFile(f);
5 } else {

Nullness Analysis of Java Bytecode via Supercompilation 163

6 view.loadDefaultConfig();
7 }
8 }

However, the next @NotNull annotation is incorrect because this method
completes normally when getConfigFile() returns null and view is null.
1 void saveConfig(@NotNull View view) {
2 File f = getConfigFile();
3 if (f != null) {
4 view.saveConfigToFile(f);
5 }
6 }

1.3 Handling of asserts

Many real-world Java libraries check that parameter is not null in the following
way:
1 if (array == null) {
2 throw new IllegalArgumentException("array is null");
3 }

Sometimes such checks may be implicit:
1 if (!(object instanceof Serializable)) {
2 throw new IllegalArgumentException("object is not Serializable");
3 }

So to handle all these checks as well and infer @NotNull for corresponding
parameters is desirable.

1.4 Inference of a subset of @NotNull annotations

The task to infer all correct @NotNull annotations in general case is undecidable.
The root cause of undecidability of this task is undecidability of the subtask to
detect whether a certain execution path in a program is reachable.

So, the practical task is to infer as much correct @NotNull annota-
tions for method parameters as possible.

Kanva-micro assumes that all branches of conditionals that do not directly
depend on nullity of parameters are reachable. Under this assumption annota-
tions inferred by Kanva-micro are sound (since a superset of all possible execu-
tion paths is considered). But some annotations are lost, so Kanva-micro infers
a subset of all correct annotations.

1.5 Algorithm presentation

Kanva-micro relies heavily on ASM library which is “an all purpose Java byte-
code manipulation and analysis framework” [1, 12]. ASM library is de-facto a
standard tool for Java bytecode processing in many production projects. The
main part of Kanva-micro is quite high-level, since all low-level boilerpate may
be gracefully delegated to ASM library. It turns out that it is clearer and easier
to present the technical details of Kanva-micro in well-established ASM terms
rather than creating a special complicated formalism for simple things. So all
technical details of the core logic of Kanva-micro are described just in listings.

164 Ilya G. Klyuchnikov

1.6 Outline

Section 2 describes the core ingredients of the algorithm and also provides a nec-
essary background about Java bytecode internals, section 3 goes into main tech-
nical details of the implementation, section 4 discusses experimental results of
annotating some Java libraries, the cost of simplifications made in Kanva-micro
and sketches how Faba overcomes these simplifications and section 5 mentions
related work.

2 Algorithm

Kanva-micro performs intra-procedural analysis: each method is analyzed sepa-
rately. Also Kanva-micro considers a general case: a Java library may be already
partially annotated.

The technical side of the problem can be easily formulated without going into
all subtle details of JVM semantics (these details are easily abstracted away).
This section deals with Java bytecode from the point of view of nullness analysis
and describes the algorithm of Kanva-micro informally.

2.1 A crash course of Java bytecode

Java source code comprises of a set of classes, each class in turn comprises of
a set of fields and methods. A method in some sense is a “unit of execution”.
Java virtual machine is a stack virtual machine. A chain of method invocations
is organized traditionally via call stack (composed of frames). Execution of a
method is associated with a frame which has a storage for variables defined in
this methods and also an operand stack. On a method invocation a current frame
is pushed on the call stack (with a return address), a new frame is created and
initialized with respect to passed arguments, a control is passed to instructions of
called method. When execution of the method is completed, the previous frame
is popped from the stack, a return value is put on the operand stack and control
is transferred to restored return address.

There are more than 200 Java bytecode instructions, however, only a rela-
tively small subset of them may cause null pointer error. Here is a list of such
bytecode instructions with descriptions when there may be a NPE (NullPointer-
Exception) during execution of this instruction.

– GETFIELD, PUTFIELD – load/store a field of an object. Error if the corre-
sponding object (an owner of the field) is null.

– ARRAYLENGTH – get the length of an array. Error if the corresponding array
is null.

– IALOAD, LALOAD, FALOAD, DALOAD, AALOAD, BALOAD, CALOAD, SALOAD – load
an int, long, float, double, reference, boolean, char, short value from an array.
Error if the corresponding array is null.

Nullness Analysis of Java Bytecode via Supercompilation 165

– IASTORE, LASTORE, FASTORE, DASTORE, AASTORE, BASTORE, CASTORE, SA-

STORE – store an int, long, float, double, reference, boolean, char, short value
in an array. Error if the corresponding array is null.

– MONITORENTER – synchronization by entering monitor of an object. Error if
the corresponding object (monitor’s owner) is null.

– INVOKESTATIC – call of a static class method (with arguments). Error if a
null argument is passed into a parameter annotated as @NotNull.

– INVOKEVIRTUAL, INVOKESPECIAL, INVOKEINTERFACE – call of an instance
method of an object. Error if the corresponding object is null or a null

argument is passed into a parameter annotated as @NotNull.
– ATHROW – throw an exception. The case when an exceptions is thrown as a

result of comparison of a parameters with null corresponds to assertions.

2.2 The core idea - inspection of process graph

Kanva-micro performs analysis for each method parameter of a reference type.
Thus, for a method with three reference parameters three independent analyses
will be run. The simple core idea is to consider all possible executions paths
inside the method assuming that a parameter of interest is null. If none of these
executions paths completes normally, the parameter is annotated as @NotNull.
We are going to build a process tree [13] and inspect each branch of this tree for
errors caused by null value of the parameter of interest. Kanva-micro doesn’t try
to build a perfect process tree – trees built by Kanva-micro may have unreachable
branches. However, the existence of such branches doesn’t affect the soundness
of inference, but simplifies inference a lot.

It is sufficient to abstract away concrete values of local variables and operands
in the operand stack in the current frame (corresponding to execution of a
method being analyzed) and consider just two abstract values:

– ParamValue – a value passed into parameter of interest.
– BasicValue – any value (there is no information whether it corresponds to

a parameter or not).

Obviously, ParamValue ⊆ BasicValue. With ASM library it is easy to get
a control flow graph for a method. To build all branches of the process tree it
is enough to explicitly unfold all possible paths in this control flow graph. Of
course, if there are cycles in the original control flow graph, then process tree
will be infinite in general case. However, there is a simple folding strategy to
fold such process tree into a finite process graph. For the purposes of inference
it will be enough just to inspect resulting process graph.

2.3 Configurations and folding strategy

Nodes in a process tree are labeled with configurations. Kanva-micro represents
a configuration as a pair of a program point and a store of abstract values. More
precisely, the configuration is a pair (insnIndex, frame):

166 Ilya G. Klyuchnikov

– insnIndex – an index of a current instruction, each method is represented
as a finite sequence of bytecode instructions,

– frame – a store (list) of local variables and stack operands, where abstract
values are of two kinds: ParamValue and BasicValue. For each program
point the size of the store is fixed and known in advance.

A nice fact is that a number of all possible configurations of a method process
tree is finite. So, there is a natural folding strategy: during construction of the
process graph to fold a current configuration to a more general configuration in
the history of the current branch (when a current configuration is an instance
of some previous configuration). Folding is performed when c ⊆ c′, where c is
a current configuration and c′ is a previous configuration. The relation c ⊆ c′

holds when instruction indices are the same and corresponding values (stored in
slots with the same index i) are related as vi ⊆ v′i. Moreover, there is no need
to construct a traditional back folding edge. So, when opportunity for folding is
detected, development of the current branch of a process tree is stopped and the
current node is just marked as a “cycle” leaf. Taken this into account, in what
follows terms process tree, process graph and graph of configurations are used
interchangeably.

A process graph (or a graph of configurations) built in this way is similar in a
spirit to one built during supercompilation [18]. There are two main differences
from traditional supercompilation:

– Driving (unfolding of a control flow graph) is done over abstract values.
– No residual program is generated, but the constructed process graph is used

for a quite specific task: approximation of a method execution in the per-
spective of a possible dereference of a null parameter.

2.4 Tracking dereferences, keeping only interesting branches

The process graph is constructed to answer the following question:

Let a certain parameter be null, do all possible executions of the method
result in errors caused by this null?

If the answer is “yes”, it is correct to annotate this parameter as @NotNull.
So, if there is a conditional of the form

1 if (param == null) {
2 ...
3 } else {
4 ...
5 }

there is no interest in the else-branch and no development of such branch is
done in the constructed process tree. A subtree in a process tree corresponding to
then-branch is a null-aware subtree (the intuition is that a programmer consider
a case when a parameter is null explicitly).

During driving step, when an instruction is executed over abstract values,
it is possible to detect situations listed in subsection 2.1 when dereference of
ParamValue happens. Such transitions are said to be dereferencing transitions.

Nullness Analysis of Java Bytecode via Supercompilation 167

2.5 Approximating method execution

So, using described folding strategy, tracking dereferences of a parameter and
keeping only interesting branches a finite process tree is developed. Additional
information used for nullness analysis is stored in nodes and edges:

– Some leaves are marked as cycle leaves.
– Some edges are marked as dereferencing ones.
– Some subtrees are marked as null-aware ones.

Based on this labeling information, another labels (“nullness labels”) describ-
ing a method behavior are produced in a bottom-up manner. First, leaves of the
process tree are labeled with following values:

– RETURN – a leaf contains a return instruction and no dereferencing edge was
taken on the path from the root.

– NPE – a dereferencing edge was taken on the path from the root, or a leaf’s
configuration points to a ATHROW instruction and this leaf belongs to a null-
aware subtree.

– ERROR – a leaf’s configuration corresponds to a ATHROW instruction but this
leaf doesn’t belong to a null-aware subtree.

– CYCLE – a leaf is a cycle leaf.

Next, nullness labels for other nodes are inferred from labels of its children.
If a node has a single child node, then label is just propagated from the child
to the parent. If a node has more child nodes then child labels are combined
according to the following table:

RETURN NPE ERROR CYCLE

RETURN RETURN RETURN RETURN RETURN

NPE RETURN NPE NPE NPE

ERROR RETURN NPE ERROR ERROR

CYCLE RETURN NPE ERROR CYCLE
Finally, the root node is labeled. If it is labeled with NPE, then the corre-

sponding parameter is annotated as @NotNull.
A nullness label in the root node is in a sense an approximation of method

execution with the following meaning:

– RETURN – there is a possible execution path which completes normally and
no proof that a given parameter is dereferenced on this path was found.

– NPE – all possible execution paths result in an exception and there is at least
one path when this exception is caused by null value of parameter.

– ERROR – all possible execution paths result in an exception but there is no
information whether or not such error is caused by null value of parameter.

– CYCLE – just a loop.

The reason why NPE and ERROR labels are distinguished is that there may be
a method which just throws an exception without checking parameters like in
the following code:
1 public void log(String msg) {
2 throw new UnsupportedOperationException();
3 }

168 Ilya G. Klyuchnikov

1 package kanva.analysis
2
3 import org.objectweb.asm.tree.*
4 import org.objectweb.asm.tree.analysis.*
5 import kanva.declarations.*
6 import kanva.graphs.*
7
8 fun buildCFG(method: Method, methodNode: MethodNode): Graph<Int> =
9 ControlFlowBuilder().buildCFG(method, methodNode)

10
11 private class ControlFlowBuilder(): Analyzer <BasicValue >(BasicInterpreter()) {
12 private class CfgBuilder: GraphBuilder <Int, Int, Graph<Int>>(true) {
13 override fun newNode(data: Int) = Node<Int>(data)
14 override fun newGraph() = Graph<Int>(true)
15 }
16
17 private var builder = CfgBuilder()
18
19 fun buildCFG(method: Method, methodNode: MethodNode): Graph<Int> {
20 builder = CfgBuilder()
21 analyze(method.declaringClass.internal, methodNode)
22 return builder.graph
23 }
24
25 override protected fun newControlFlowEdge(insn: Int, successor: Int) {
26 val fromNode = builder.getOrCreateNode(insn)
27 val toNode = builder.getOrCreateNode(successor)
28 builder.getOrCreateEdge(fromNode, toNode)
29 }
30 }

Fig. 1. Construction of a control-flow graph

2.6 Correctness

Correctness of inference is almost obvious – a parameter is assumed to be null

and all possible execution paths are considered. A parameter is annotated as
@NotNull only if all execution paths result in an exception, which, in turn, satis-
fies the requirement that the method cannot complete normally when parameter
is null.

3 Implementation

Initially this task has arisen in the context of development of the Kotlin program-
ming language pursuing safer interoperability of Kotlin and Java. So, Kanva-
micro is coded in Kotlin. The implementation is rather concise since many
lower-level things are delegated to ASM library [12].

Technically, the full cycle of annotating a Java library consists of following
stages:

1. Context construction. Context is a list of all signatures, their bytecode in
ASM representation and a storage for inferred annotations. At the next
steps inferred annotations are put in the context. Inferred annotations can
be fetched from the context by a method signature.

Nullness Analysis of Java Bytecode via Supercompilation 169

1 class ParamValue(tp: Type?): BasicValue(tp)
2 class InstanceOfCheckValue(tp: Type?): BasicValue(tp)
3 class Configuration(val insnIndex: Int, val frame: Frame<BasicValue >)
4 fun startConfiguration(
5 method: Method, methodNode: MethodNode ,paramIndex: Int
6): Configuration {
7 val frame = Frame<BasicValue >(methodNode.maxLocals , methodNode.maxStack)
8 val returnType = Type.getReturnType(methodNode.desc)
9 val returnValue =

10 if (returnType == Type.VOID_TYPE) null else BasicValue(returnType)
11 frame.setReturn(returnValue)
12 val args = Type.getArgumentTypes(methodNode.desc)
13 var local = 0
14 if (!method.access.isStatic()) {
15 val thisValue=
16 BasicValue(Type.getObjectType(method.declaringClass.internal))
17 frame.setLocal(local++, thisValue)
18 }
19 for (i in 0..args.size - 1) {
20 val value =
21 if (i == paramIndex) ParamValue(args[i]) else BasicValue(args[i])
22 frame.setLocal(local++, value)
23 if (args[i].getSize() == 2)
24 frame.setLocal(local++, BasicValue.UNINITIALIZED_VALUE)
25 }
26 while (local < methodNode.maxLocals)
27 frame.setLocal(local++, BasicValue.UNINITIALIZED_VALUE)
28 return Configuration(0, frame)
29 }

Fig. 2. Construction of a start configuration

2. Construction of dependency graph, calculation of strongly connected com-
ponents. What described in the previous section is just one iteration of the
inference cycle. Annotations of different methods may depend on each other,
since inference of annotations for a given method relies on annotations for
methods called from the current method. So, annotating is an iterative pro-
cess. To minimize the number of iterations, the graph of dependencies be-
tween methods is constructed, strongly connected components are calculated
and then sorted in reverse topological order.

3. Iterative inference within a single component. All members of a component
are put in a queue. Then members are pulled from this queue one by one
and the described algorithm is run for each of not yet annotated
parameters. If a new annotation is inferred, dependent methods are added
into the queue. Obviously, this process converges.

Steps 1 and 2 are rather trivial and implemented in a standard way. An
interested reader may consult the full source code for details. However, a single
iteration of inference is rather interesting from a technical point of view. And
this part heavily relies on ASM library.

First, a method’s control flow graph is built. ASM provides a number of
utilities for bytecode analyses. One of such utilities is Analyzer. Analyzer

performs basic bytecode analyses given a semantic bytecode interpreter. Also
ASM library provides a simple interpreter BasicInterpreter. Analyzer and

170 Ilya G. Klyuchnikov

1 class ParamSpyInterpreter(val context: Context): BasicInterpreter() {
2 var dereferenced = false
3 fun reset() {
4 dereferenced = false
5 }
6
7 public override fun unaryOperation(
8 insn: AbstractInsnNode , value: BasicValue
9): BasicValue? {

10 if (value is ParamValue)
11 when (insn.getOpcode()) {
12 GETFIELD , ARRAYLENGTH , MONITORENTER ->
13 dereferenced = true
14 CHECKCAST ->
15 return ParamValue(Type.getObjectType((insn as TypeInsnNode).desc))
16 INSTANCEOF ->
17 return InstanceOfCheckValue(Type.INT_TYPE)
18 }
19 return super.unaryOperation(insn, value);
20 }
21
22 public override fun binaryOperation(
23 insn: AbstractInsnNode , v1: BasicValue , v2: BasicValue
24): BasicValue? {
25 if (v1 is ParamValue)
26 when (insn.getOpcode()) {
27 IALOAD, LALOAD, FALOAD, DALOAD, AALOAD,
28 BALOAD, CALOAD, SALOAD, PUTFIELD ->
29 dereferenced = true
30 }
31 return super.binaryOperation(insn, v1, v2)
32 }
33
34 public override fun ternaryOperation(
35 insn: AbstractInsnNode , v1: BasicValue , v2: BasicValue , v3: BasicValue
36): BasicValue? {
37 if (v1 is ParamValue)
38 when (insn.getOpcode()) {
39 IASTORE, LASTORE, FASTORE, DASTORE,
40 AASTORE, BASTORE, CASTORE, SASTORE ->
41 dereferenced = true
42 }
43 return super.ternaryOperation(insn, v1, v2, v3)
44 }
45
46 public override fun naryOperation(
47 insn: AbstractInsnNode , values: List<BasicValue >
48): BasicValue? {
49 if (insn.getOpcode() != INVOKESTATIC)
50 dereferenced = values.first() is ParamValue
51 if (insn is MethodInsnNode) {
52 val method = context.findMethodByMethodInsnNode(insn)
53 if (method != null && method.isStable())
54 for (pos in context.findNotNullParamPositions(method))
55 dereferenced = dereferenced || values[pos.index] is ParamValue
56 }
57 return super.naryOperation(insn, values);
58 }
59 }

Fig. 3. Semantic interpreter for driving and tracking dereference of ParamValue

BasicInterpreter are used by Kanva-micro to construct a method’s control
flow graph. How this is done is shown in a listing in Figure 1. The function

Nullness Analysis of Java Bytecode via Supercompilation 171

1 class NullParamSpeculator(val methodContext: MethodContext , val pIdx: Int) {
2 val method = methodContext.method
3 val cfg = methodContext.cfg
4 val methodNode = methodContext.methodNode
5 val interpreter = ParamSpyInterpreter(methodContext.ctx)
6 fun shouldBeNotNull(): Boolean = speculate() == Result.NPE
7 fun speculate(): Result = speculate(
8 startConfiguration(method, methodNode , pIdx), listOf(),false, false
9)

10
11 fun speculate(
12 conf: Configuration , history: List<Configuration >,
13 alreadyDereferenced: Boolean, nullPath: Boolean
14): Result {
15 val insnIndex = conf.insnIndex
16 val frame = conf.frame
17 if (history.any{it.insnIndex==insnIndex && isInstanceOf(frame, it.frame)})
18 return Result.CYCLE
19 val cfgNode = cfg.findNode(insnIndex)!!
20 val insnNode = methodNode.instructions[insnIndex]
21 val (nextFrame , dereferencedHere) = execute(frame, insnNode)
22 val nextConfs =
23 cfgNode.successors.map{Configuration(it.insnIndex , nextFrame)}
24 val nextHistory = history + conf
25 val dereferenced = alreadyDereferenced || dereferencedHere
26 val opCode = insnNode.getOpcode()
27 return when {
28 opCode.isReturn() && dereferenced -> Result.NPE
29 opCode.isReturn() -> Result.RETURN
30 opCode.isThrow() && dereferenced -> Result.NPE
31 opCode.isThrow() && nullPath -> Result.NPE
32 opCode.isThrow() -> Result.ERROR
33 opCode == IFNONNULL && Frame(frame).pop() is ParamValue ->
34 speculate(nextConfs.first(), nextHistory , dereferenced , true)
35 opCode == IFNULL && Frame(frame).pop() is ParamValue ->
36 speculate(nextConfs.last(), nextHistory , dereferenced , true)
37 opCode == IFEQ && Frame(frame).pop() is InstanceOfCheckValue ->
38 speculate(nextConfs.last(), nextHistory , dereferenced , true)
39 opCode == IFNE && Frame(frame).pop() is InstanceOfCheckValue ->
40 speculate(nextConfs.first(), nextHistory , dereferenced , true)
41 else ->
42 nextConfs.map{
43 speculate(it, nextHistory , dereferenced , nullPath)
44 } reduce{ r1, r2 -> r1 join r2}
45 }
46 }
47
48 fun execute(
49 frame: Frame<BasicValue >, insnNode: AbstractInsnNode
50): Pair<Frame<BasicValue >, Boolean> = when (insnNode.getType()) {
51 AbstractInsnNode.LABEL, AbstractInsnNode.LINE, AbstractInsnNode.FRAME ->
52 Pair(frame, false)
53 else -> {
54 val nextFrame = Frame(frame)
55 interpreter.reset()
56 nextFrame.execute(insnNode, interpreter)
57 Pair(nextFrame , interpreter.dereferenced)
58 }
59 }
60 }

Fig. 4. Inference of @NotNull annotation

172 Ilya G. Klyuchnikov

buildCFG builds a directed graph whose nodes are labeled with indices of in-
structions of a method and edges correspond to transitions between instructions.

BasicValue introduced in subsection 2.2 is already implemented in ASM.
The class Frame provided by ASM corresponds to a frame holding abstract val-
ues. BasicInterpreter already implements execution of bytecode instructions
over BasicValues is the desired way. Kanva-micro extends BasicInterpreter

in order to distinguish between BasicValue and ParamValue. Notions of Param-
Values and configurations are depicted in a listing in Figure 2. Class Instance-
OfCheckValue is for tracking instanceof checks. The function startConfigu-

ration presented in Figure 2 creates a start configuration (placed in the root
node of a process tree) for a given method and an index of a parameter being
analyzed. The main logic of startConfiguration is that all values in frame
except a given parameter are initialized with BasicValue.

BasicInterpreter provided by ASM already has almost everything needed
for driving. The missed parts are:

– Tracking of dereferencing of ParamValue.
– Handling of instanceof checks of ParamValue.
– Knowledge about already inferred annotations (to detect dereferencing).
– Propagation of ParamValue during class casting.

All these parts are implemented in class ParamSpyInterpreter shown in
Figure 3. The most interested lines are 52-56: if the current parameter of inter-
est is passed as an argument to another parameter (of some method) already
annotated as @NotNull, it is handled in the same way as dereferencing of the
current parameter.

The main analysis is implemented in the class NullParamSpeculator shown
in Figure 4. NullParamSpeculator holds a methodContext, which contains ev-
erything needed for inference, and an index of a parameter being annotated. The
method shouldBeNotNull returns true if an approximation of method execu-
tion is NPE. A process tree is not constructed explicitly here, since it is enough
to get a nullness label for the root configuration. The call to speculate(conf,

history, alreadyDereferenced, nullPath) results in one of RETURN, NPE,
ERROR, CYCLE nullness labels. The call arguments are:

– conf – the current configuration (for which nullness label should be calcu-
lated),

– history – a list of already encountered configurations (for folding),
– alreadyDereferenced – whether dereferencing was already detected on a

path from the root to current configuration,
– nullPath – if nullPath is true, it means that current configuration belongs

to a null-aware subtree.

Let’s iterate through the code of the speculate method line-by-line.
If there is a more general configuration in the history, folding is performed,

the corresponding label is CYCLE. Otherwise, the current instruction is executed –
the execute method returns a pair of a next frame and a boolean whether there

Nullness Analysis of Java Bytecode via Supercompilation 173

was dereferencing of the parameter during instruction execution. If the current
instruction is a return or throw instruction, then a nullness label is calculated
based on the dereferenced and nullPath flags. Otherwise, if the current in-
struction is IFNULL or IFNONNULL and a value being tested is ParamValue (it
corresponds to conditionals if (param == null) and if (param != null)), a
corresponding null-aware subtree is processed (the nullPath flag to true).

The same logic applies to handling of if (param instanceof SomeClass)

conditional. When param is null, this check results in false. The implemen-
tation is a bit verbose since there is no special instruction in Java bytecode
for such conditional and this check is compiled into the sequence of two in-
structions: INSTANCEOF and IFEQ. The INSTANCEOF instruction is handled by
ParamSpyInterpreter: if an operand is ParamValue, then a special Instance-
OfCheckValue value is produced. The IFEQ instruction is handled inside the
speculate method: when the current instruction is IFEQ and an operand on the
top of the stack is InstanceOfCheckValue, then the if (param instanceof

SomeClass) construction is recognized and only a branch that corresponds to
null parameter is considered. (Handling of the IFNE instruction corresponds to
if (!(param instanceof SomeClass)) construction.)

Otherwise, nullness labels for child configurations are calculated and com-
bined. This concludes the discussion of the implementation.

4 Discussion

In a sense, Kanva-micro performs domain-specific supercompilation [15] of Java
bytecode, abstracting away almost all aspects of operational semantics not as-
sociated with nullness analysis. Because of these abstractions, representation of
configurations becomes extremely simple – just a bit vector. The interesting fact
is that configurations are so generalized in advance, that no traditional online
generalization is required to ensure termination of supercompilation. But this
comes for the price that a constructed process tree of method execution is not
perfect in a general case.

4.1 The cost of simplifications

The main point of the Kanva-micro project is simplicity, focusing on the essence
of the method and ignoring some technical details for the sake of brevity of
presentation. However, there are two significant drawbacks that simplifications
that make Kanva-micro not ready for production use.

Exponential complexity The main drawback of Kanva-micro is that this
algorithm is of exponential complexity in general case. This complexity may
exploded by a method with sequential conditionals.

1 if (...) {
2
3 }

174 Ilya G. Klyuchnikov

4 if (...) {
5
6 }
7 if (...) {
8
9 }

If there are n sequential conditionals in a method, then process tree constructed
by Kanva-micro will contain 2n branches in the worst case.

Memory usage The bytecode of a library method is processed by Kanva-
micro more than one time: the first time when a graph of dependencies between
methods is constructed and then during iterative inference of annotations inside
a strongly connected component of the graph of dependencies. Loading and
parsing the bytecode of a method from scratch every time without additional
processing of binaries is problematic, so Kanva-micro loads all library bytecode
into memory at once in advance. This means that the amount of memory required
by Kanva-micro is proportional to the size of a library, which is not acceptable
from a practical point of view.

4.2 The Faba project

The Faba project [4] overcomes mentioned drawbacks by smart handling of the
library bytecode. Faba processes a binary library in two stages:

1. Indexing a library: the result of indexing is a set of equations over a lattice.
2. Solving equations.

At the first stage each method is processed exactly once. After the bytecode
for a method is indexed, it is unloaded. Equations are not memory consuming,
so the problem of memory usage disappears.

During indexing a method, Faba exploits memoization and sharing facilities.
The main observation is that in a sequence of conditionals in real libraries the
majority of conditionals are irrelevant to nullness analysis (do not test a param-
eter for nullity). Driving of both branches of “irrelevant” conditions result in
most cases in the same configurations in two nodes of the process tree, these
nodes are joined. In general case Faba is also of exponential complexity, but this
exponential complexity is not exploded by real-world libraries.

Both problems may be tamed in naive but simple ways: the memory usage
problem may be solved via unloading the bytecode for a method after its byte-
code is processed by the current iteration and loading it from the scratch from
the disk. A simple ad-hoc way to mitigate exponential complexity of Kanva-
micro is just to limit the number of processed configurations. When this limit is
reached, analysis for the method stops and infers nothing.

4.3 Experiments and more details

The Kanva-micro project [8] provides utilities to annotate popular Java libraries
(available as Maven artifacts) in a simple way. The project page also has a set of

Nullness Analysis of Java Bytecode via Supercompilation 175

experimental result for running inference with different settings. The interesting
fact is that limiting the number of processed configurations by a reasonable num-
ber (say, by 5000) Kanva-micro infers about 95 percent of annotations inferred
by Faba in comparable time.

An interested reader may also consult the Kanva-micro’s wiki for more more
technical details related to implementation and experiments.

5 Related work

Initially Kanva-micro was developed in the context of JetBrains KAnnotator
tool [7]. KAnnotator is based on abstract interpretation and infers different null-
ness annotations (for method parameters and for method results) in a single pass.
So, abstract domains and logic of approximations in KAnnotator is much more
complex that of Kanva-micro.

On the contrary, Kanva-micro is specialized to infer just one type of nullness
annotations. The Faba project infers not only @NotNull annotations for method
parameters, but also @NotNull annotations for method results and @Contract

annotations [5]. All Faba inferencers are quite similar and based on supercom-
pilation but have very different abstract domains, logic of approximations and
logic for sharing configurations.

The pragmatic observation from developing Kanva-micro and Faba is that it
is more practical to have a set of specialized inferencers which run independently
and may reuse results of each other via context rather than a tool that runs
different analyses together in a single pass.

The main goal of KAnnotator, Kanva-micro and Faba is to annotate existing
Java libraries for safer usage. Inference of annotations happens on bytecode level,
no source is required.

Surprisingly, as we can judge from existing literature, this task was not ad-
dressed in academia from practical point of view before. The closest existing
tool is NIT [14]. NIT infers @NotNull and @Nullable annotations but these
annotations have different semantics. NIT considers Java bytecode as a single
application and starts analysis from so called entry points. A @NotNull param-
eter annotation in NIT setting means that during execution of an application
null will never be passed into this parameter, other annotations have similar se-
mantics – they describe which values may be passed to parameters and returned
from methods during executions of a specific application. NIT doesn’t consider
bytecode at library level. NIT motivation is that such analysis maybe used to
detect bugs in an applications. Another possible application of NIT annotations
is bytecode optimizations – removing unnessecary checks from bytecode.

Another tool that infers nullness information from bytecode is Julia [17].
Again, this information is inferred with the goal of analysis – the main applica-
tion is to generate a set of warnings about possible null pointer exceptions.

There is a tool called JACK [11,16] which verifies Java bytecode with respect
of @NotNull annotations, ensuring that null will never be passed to a @NotNull

variable or parameter.

176 Ilya G. Klyuchnikov

Note that Kanva-micro annotations are semantic-based. There is a lot of
works devoted to checking and inferencing nullness annotations in source code,
but these annotations have different semantics, since they may forbid some ex-
ecutions paths not resulting in null pointer exception. Also many source-based
annotation inferencers require an additional user’s input.

References

1. ASM Framework. http://asm.ow2.org/.
2. Ceylon programming language. http://ceylon-lang.org/.
3. Eclipse user guide: using null annotations. http://help.eclipse.org/kepler/

topic/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm.
4. Faba, fast bytecode analysis. https://github.com/ilya-klyuchnikov/faba.
5. IntelliJ IDEA 13.1 Help. @Contract Annotations. http://www.jetbrains.com/

idea/webhelp/@contract-annotations.html.
6. IntelliJ IDEA How-To, Nullable How-To. https://www.jetbrains.com/idea/

documentation/howto.html.
7. KAnnotator. https://github.com/JetBrains/kannotator.
8. Kanva-micro. https://github.com/ilya-klyuchnikov/kanva-micro.
9. Kotlin programming language. http://kotlin.jetbrains.org/.

10. The Checker Framework. Custom pluggable types for Java. http://types.cs.

washington.edu/checker-framework/.
11. The Java Annotation Checker (JACK). http://homepages.ecs.vuw.ac.nz/˜djp/

JACK/.
12. E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to

implement adaptable systems. Adaptable and extensible component systems, 30,
2002.

13. R. Glück and A. Klimov. Occam’s razor in metacompuation: the notion of a perfect
process tree. In WSA ’93: Proceedings of the Third International Workshop on
Static Analysis, pages 112–123, London, UK, 1993. Springer-Verlag.

14. L. Hubert. A non-null annotation inferencer for java bytecode. In Proceedings of
the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’08, pages 36–42. ACM, 2008.

15. A. Klimov, I. Klyuchnikov, and S. Romanenko. Automatic verification of counter
systems via domain-specific multi-result supercompilation. In Third International
Valentin Turchin Workshop on Metacomputation, 2012.

16. C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode verification
for @NonNull types. In Compiler Construction, pages 229–244. Springer, 2008.

17. F. Spoto. The nullness analyser of julia. In E. Clarke and A. Voronkov, edi-
tors, Logic for Programming, Artificial Intelligence, and Reasoning, volume 6355
of Lecture Notes in Computer Science, pages 405–424. Springer Berlin Heidelberg,
2010.

18. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

An Approach for Modular Verification of
Multi-Result Supercompilers

(Work in Progress)

Dimitur Nikolaev Krustev

IGE+XAO Balkan, Bulgaria
dkrustev@ige-xao.com

Abstract. Multi-result supercompilation is a recent and promising gen-
eralization of classical supercompilation. One of its goals is to permit easy
construction of different supercompilers from a reusable top-level algo-
rithm and independently implemented components for driving, folding,
etc. The problem of preservation of semantics by multi-result supercom-
pilers has not yet been studied in detail. So, while the implementation
of a new multi-result supercompiler is simplified by the high degree of
modularity, its verification is not. To alleviate this burden, we search for
a set of sufficient conditions on the basic building blocks (such as driving
or folding), which – if met – can be plugged into general theorems, to
ensure supercompiler correctness. If the proposed approach proves suc-
cessful, it will make multi-result supercompiler verification as easy and
modular as the implementation itself.

1 Introduction

Multi-result supercompilation [10,11] is a recent generalization of classical super-
compilation [18,19]. One of its key insights is to permit generalization to happen
at any moment, and to consider and collect the different graphs of configurations
arising from different choices about generalization. Recall that in classical super-
compilation generalization is only applied when the whistle blows and folding
is not possible. Paradoxically it turns out that in certain situations early gen-
eralization can lead to an optimal result, which cannot be obtained using the
classical approach [8].

Another advantage of multi-result supercompilation (MRSC1) is that, from
the beginning, it was designed in a modular way, as follows:

– a generic high-level algorithm, which is largely independent of the particular
choice of object language;

– a small set of primitive operations, which encapsulate the language-specific
parts of the supercompiler algorithm.

1 The abbreviation MRSC is usually reserved for the original implementation in Scala,
“The MRSC Toolkit”. We take the liberty to use it also for multi-result supercompi-
lation in general, for brevity.

178 Dimitur Nikolaev Krustev

This modularity allows the programmer to easily create supercompilers for dif-
ferent object languages, including highly specialized ones for particular DSLs [8].
A further refinement of modularity is present in a recent Agda formalization of
MRSC [4], which is based on a more streamlined set of primitive operations.
Moreover, the Agda formalization uses a “big-step” definition of MRSC + whis-
tles based on inductive bars [3], which further simplify the main data structures
and algorithms. The main goal of Grechanik et al. [4] is to formalize a more com-
pact representation of the whole set of results produced by MRSC, to prove this
representation correct w.r.t. the original representation (simple list of graphs),
and to show that many useful operations (filtering the set of results, selecting an
optimal result by certain criteria) can be directly and more efficiently performed
on the compact representation. The formalization of object language semantics
and verification of the preservation of this semantics by MRSC is beyond the
scope of that paper.

As verification of semantics preservation by supercompilers is an interesting
and practically useful topic in itself [12–14], the approach we describe here aims
to fill this gap, and to propose a way for verifying semantics preservation of
supercompilers based on big-step MRSC. We take the Agda formalization of
Grechanik et al. [4] as a starting point (ported to Coq) and augment it with:

– a set of primitives for describing the semantics of the object language (Sec.
3)

– based on these primitives:
• a formal semantics of trees of configurations produced by multi-result

driving + generalization (Sec. 3);
• a formal semantics of graphs of configurations produced by multi-result

supercompilation (Sec. 4);
– a more precise representation of backward graph nodes, which result from

folding (Sec. 4), and an MRSC algorithm adapted to this representation
(Sec. 5).

We further propose an approach for the modular verification of semantics preser-
vation for any supercompiler built using the proposed components. The main
idea is to provide, as much as possible, general proofs of correctness for the high-
level parts of the supercompiler, which do not depend on the object language.
Implementers of particular supercompilers then only need to fill those parts of
the correctness proof that are specific to the object language and the particu-
lar choice of supercompiler primitive operations (generalization, folding, whistle,
. . .). A key idea for simplifying and modularizing the overall correctness proof
is the assumption that any graph created by multi-result supercompilation, if
unfolded to a tree, can also be obtained by performing multi-result driving alone.
This important assumption allows to decompose the correctness verification in
several stages:

– verification of semantics preservation for driving + generalization in isola-
tion. In other words, all trees obtained from driving must preserve language
semantics (Sec. 3). As this step is mostly language-specific, it must be done
separately for each supercompiler.

An Approach for Modular Verification of Multi-Result Supercompilers 179

– general proof that graphs produced by multi-result supercompilation have
the same meaning as the trees to which they can be unfolded (Sec. 4). This
proof can be reused directly for any supercompiler based on the described
algorithm.

– using some assumptions about the folding operation, general proof that any
MRSC-produced graph unfolded into a tree can also be produced by driving
alone (Sec. 5). This proof can also be reused for any particular supercompiler,
only the assumptions about the folding operation must be verified separately
in each case. The advantage is that the impact of folding is limited only to
checking its specific conditions; other parts of the proof can ignore folding
completely.

The whistle is used only for ensuring termination, and has no impact on seman-
tics preservation at all.

The current implementation of the proposed approach is in Coq and we give
most definitions and property statements directly in Coq2. Understanding the
ideas behind most such fragments of Coq source should not require any deep
knowledge of that language, as they use familiar constructs from functional pro-
gramming languages and formal logic, only with slight variations in syntax. We
also stress that the approach is not limited in any way to working only with Coq,
or even to computer-assisted formal verification in general. Of course, the im-
plementation should be directly portable to other dependently-typed languages
such as Agda or Idris. Most importantly, the implementation of the main data
structures and algorithms should be easy to port as well to any modern language
with good support for functional programming (Haskell, ML, Scala, . . .). In the
latter case a realistic alternative to formal proofs is the use of the sufficient con-
ditions on basic blocks in conjunction with a property-based testing tool like
QuickCheck [2], which can still give high confidence in the correctness of the
supercompiler.

2 Preliminaries

Before delving into the main components of the proposed MRSC formalization,
let’s quickly introduce some preliminary definitions, mostly necessary to make
things work in a total dependently-typed language like Coq or Agda.

2.1 Modeling General Recursive Computations

In order to formally prove correctness results, we need first to formalize pro-
gramming language semantics, in an executable form, in a total language. As
any kind of interpreter (big-step, small-step, ...) for a Turing-complete language

2 All proofs, some auxiliary definitions, and most lemmas are omitted. Interested
readers can find all the gory details in the Coq sources accompanying the paper:
https://sites.google.com/site/dkrustev/Home/publications

180 Dimitur Nikolaev Krustev

is a partial, potentially non-terminating function, we must select some round-
about way to represent such functions. While different partiality monads based
on coinduction exist, they all have different advantages and drawbacks [1], and
none of them is practical for all possible occasions. So we stick to a very basic
representation: monotonic functions of type nat → option A, where we use the
usual ordering for nat and an “information ordering” for option A (which is ex-
plicitly defined in Fig. 1). The nat argument serves as a finite limit to the amount
of computation performed. If we can complete it within this limit, we return the
resulting value wrapped in Some, otherwise we return None. The monotonicity
condition simply states, that if we can return a value within some limit, we will
always return the same value when given higher limits. Such a representation
should be compatible with most kinds of existing partiality monads, which can
be equipped with a run function of type nat → option A. We are interested in
the extensional equivalence of such computations: if one of 2 computations, given
some limit, can return a value, the other also has some (possibly different) limit,
after which it will return the same value, and vice versa. This is captured in the
definition of EvalEquiv. Note that if converting the definition of MRSC below

Definition FunNatOptMonotone {A} (f : nat → option A) : Prop :=
∀ n x, f n = Some x → ∀ m, n ≤ m → f m = Some x.

Inductive OptInfoLe {A} : option A → option A → Prop :=
| OptInfoLeNone: ∀ x, OptInfoLe None x
| OptInfoLeSome: ∀ x, OptInfoLe (Some x) (Some x).

Definition EvalEquiv {A} (f1 f2 : nat → option A) : Prop :=
∀ x, (∃ n, f1 n = Some x) ↔ (∃ n, f2 n = Some x).

Fig. 1: Model of general recursive computations

to a Turing-complete functional language like Haskell or ML, it would proba-
bly be more practical to replace this encoding of potentially non-terminating
computations with a representation of lazy values.

2.2 Bar Whistles

Following [4], we use inductive bars [3] as whistles (Fig. 2). Recall that the main
job of the whistle is to ensure termination of the supercompiler. The advantage of
inductive bars is that the supercompiler definition becomes structurally-recursive
on the bar, making it obviously terminating. Different kinds of bars can be built
in a compositional way, and we can also build an inductive bar from a decidable
almost-full relation – almost-full relations being another constructive alternative
to the well-quasi orders classically used in supercompilation [20]. We do not go
into further detail here, because the construction of a suitable inductive bar is
orthogonal to the correctness issues we study.

An Approach for Modular Verification of Multi-Result Supercompilers 181

Inductive Bar {A: Type} (D : list A → Type) : list A → Type :=
| BarNow: ∀ {h: list A} (bz : D h), Bar D h
| BarLater: ∀ {h: list A} (bs: ∀ c, Bar D (c :: h)), Bar D h.

Record BarWhistle (A: Type) : Type := MkBarWhistle {
dangerous: list A → Prop;
dangerousCons: ∀ (c: A) (h: list A), dangerous h → dangerous (c :: h);
dangerousDec: ∀ h, {dangerous h} + {¬ (dangerous h)};
inductiveBar: Bar dangerous nil

}.

Fig. 2: Inductive bars for whistles

3 Driving, Trees of Configurations and Their Semantics

3.1 Trees of Configurations, Sets of Trees

Given some abstract type representing configurations, we can give a straightfor-
ward definition of trees of configurations:
Variable Cfg : Type.
CoInductive CfgTree: Type := CTNode: Cfg → FList CfgTree → CfgTree.

What is conspicuously missing are contractions. We assume – as suggested
in [4] – that when present, the contraction of an edge is merged with the con-
figuration below the edge. So we need to only deal with configurations, thus
simplifying the formal definition of MRSC. As an obscure technical detail, we
use an alternative definition of lists here (FList A) just to avoid some restrictions
of Coq’s productivity checker [15]. (Readers not particularly interested in such
idiosyncrasies of Coq can safely pretend that FList is the same as list, drop the
“fl” prefix in functions/predicates like flMap, FLExists, ..., and consider list2flist
and flist2list as identity functions.)

Multi-result driving will typically produce an infinite list of infinite trees
of configurations. It appears hard to explicitly enumerate this list in a total
language, as it grows both in width and in height at the same time. As an
alternative, we can re-use the trick of Grechanik et al [4] to make a compact
representation of the whole set of trees produced by multi-result driving. The
meaning of the encoding is probably easiest to grasp in terms of the process of
multi-result driving itself, to which we shall come shortly.
CoInductive CfgTreeSet: Type :=
| CTSBuild: Cfg → FList (FList CfgTreeSet) → CfgTreeSet.
The only important operation on such sets of trees is membership. Luckily

it is definable as a coinductive relation. This definition is best illustrated by a
picture (Fig. 3).

CoInductive TreeInSet: CfgTree → CfgTreeSet → Prop :=
| TreeInBuild: ∀ c (ts: FList CfgTree) (tsss: FList (FList CfgTreeSet)),

FLExists (fun tss ⇒ FLForall2 TreeInSet ts tss) tsss
→ TreeInSet (CTNode c ts) (CTSBuild c tsss).

182 Dimitur Nikolaev Krustev

CTNode c

...

CTSBuild c

tss1 ... tssi ... tssn
...

∈

∃i

t1 tj ts11 ts1k tsi1 tsij tsn1 tsnm

∈ ∈

Fig. 3: Membership of a tree in a tree-set

3.2 Driving (+ Generalization)

We explicitly try to follow as closely as possible the Agda formalization of MRSC
proposed by Grechanik et al [4] (modulo alpha-equivalence). We assume the
same primitive – mrscSteps – for performing driving and generalization. Given a
current configuration, it will produce a list of results, each of which is in turn a
list of new configurations. Any such list of configurations is the result of either a
driving step or a generalization step performed on the initial configuration. We
can use this primitive to build the whole set of trees corresponding to a given
initial configuration. buildCfgTrees is actually the full high-level algorithm for
multi-result driving!
Variable mrscSteps: Cfg → list (list Cfg).
CoFixpoint buildCfgTrees (c: Cfg) : CfgTreeSet :=

CTSBuild c (flMap (flMap buildCfgTrees)
(list2flist (map list2flist (mrscSteps c)))).

3.3 Tree Semantics

We first introduce several abstract primitives, related to the semantics of the
object language (Fig. 4). The most important one – evalCfg – represents a “ref-
erence” interpreter for (configurations of) the object language. As it is encoded
using the chosen representation for general recursive functions, it must satisfy the
corresponding monotonicity condition. The other 3 primitives (evalNodeXXX)
supply the language-specific parts of the “tree interpreter”. The generic algo-
rithm of this tree interpreter – which formally defines the semantics of trees of
configurations – is given in Fig. 5. It is easy to deduce the purpose of the 3
primitives from this definition itself: evalNodeResult computes (if possible) the
final value for the current tree node, while evalNodeInitEnv and evalNodeStep
serve to maintain the evaluation environment (assuming a fixed evaluation order
from left to right for subtrees of the node). Note that, while evalCfg can be a

An Approach for Modular Verification of Multi-Result Supercompilers 183

general recursive computation, the primitives for the tree interpreter do not have
a “fuel” argument – they are expected to be total functions.

Variable Val : Type. Variable EvalEnv : Type.
Variable evalCfg : EvalEnv → Cfg → nat → option Val.
Hypothesis evalCfg monotone: ∀ env c, FunNatOptMonotone (evalCfg env c).
Variable evalNodeInitEnv : EvalEnv → Cfg → EvalEnv.
Variable evalNodeStep: EvalEnv → Cfg → list (option Val)→ option Val → EvalEnv.
Variable evalNodeResult : EvalEnv → Cfg → list (option Val) → option Val.

Fig. 4: Evaluation primitives

Fixpoint evalCfgTree (env : EvalEnv) (t : CfgTree) (n: nat) {struct n} : option Val :=
match n with
| 0 ⇒ None
| S n ⇒ match t with
| CTNode c ts ⇒
let stepf (p: EvalEnv × list (option Val)) (t : CfgTree)
: EvalEnv × list (option Val) :=
let env := fst p in let ovs := snd p in
let ov := evalCfgTree env t n in
(evalNodeStep env c ovs ov, ov::ovs) in

evalNodeResult env c
(snd (fold left stepf (flist2list ts) (evalNodeInitEnv env c, nil)))

end
end.

Fig. 5: Tree interpreter

The following requirement – evalCfg evalCfgTree equiv – is the cornerstone
for establishing MRSC correctness: we assume that each tree produced by multi-
result driving is semantically equivalent to the initial configuration. This as-
sumption permits to easily establish another natural coherence property – that
all trees resulting from multi-result driving are semantically equivalent.
Hypothesis evalCfg evalCfgTree equiv : ∀ env c t,

TreeInSet t (buildCfgTrees c)
→ EvalEquiv (evalCfg env c) (evalCfgTree env t).

Lemma AllTreesEquiv: ∀ env c t1 t2, let ts := buildCfgTrees c in
TreeInSet t1 ts → TreeInSet t2 ts →
EvalEquiv (evalCfgTree env t1) (evalCfgTree env t2).

184 Dimitur Nikolaev Krustev

4 Graphs of Configurations, Graph Semantics

4.1 Graph definition

The definition of MRSC graphs of configurations (Fig. 6) is still similar to the
Agda formalization of Grechanik et al. [4], the important difference being the
treatment of backward nodes resulting from folding: they contain an index de-
termining the upper node + a function that can convert the upper configuration
to the lower one. Since a graph having a backward node as root has no sense
(and is never created by MRSC), we capture this invariant by a dedicated data
type – TopCfgGraph.

Inductive CfgGraph : Type :=
| CGBack: nat → (Cfg → Cfg) → CfgGraph
| CGForth: Cfg → list CfgGraph → CfgGraph.

Inductive TopCfgGraph : Type :=
| TCGForth: Cfg → list CfgGraph → TopCfgGraph.

Definition top2graph (g : TopCfgGraph) : CfgGraph :=
match g with
| TCGForth c gs ⇒ CGForth c gs
end.

Fig. 6: Graphs of configurations

4.2 Converting Graphs to Trees

We can define the unfolding of a graph of configurations into a tree of configura-
tions (Fig. 7). The main work is done in a helper function graph2treeRec, which
must maintain several recursion invariants. The parameter topG always keeps a
reference to the root of the tree, and is used to give a meaning even to incorrect
graphs, in which the index of a backward node is too big. In such cases we simply
assume the index points to the root of the graph. gs contains – in reverse order
– all nodes in the path to the root of the graph; it grows when passing through
a forward node and shrinks back when passing through a backward node. The
parameter f is the composition of all configuration transformations of backward
nodes, through which we have already passed.

4.3 Graph Semantics

We define the semantics of graphs of configurations by defining a “graph inter-
preter” (Fig. 8). Again, we use a helper function evalGraphRec, whose parameters
topG, gs, and f are used in the same way as in graph2treeRec, in essence perform-
ing graph unfolding “on the fly”. For the interpretation of each node we reuse
the same language-specific primitives we have used for the tree interpreter.

An Approach for Modular Verification of Multi-Result Supercompilers 185

CoFixpoint graph2treeRec (topG: TopCfgGraph) (gs: list TopCfgGraph)
(f : Cfg → Cfg) (g : CfgGraph) : CfgTree :=
let topGraph2tree (gs: list TopCfgGraph) (f : Cfg → Cfg) (g : TopCfgGraph)
: CfgTree :=
match g with
| TCGForth c gs1 ⇒

CTNode (f c) (flMap (graph2treeRec topG (g::gs) f) (list2flist gs1))
end in

match g with
| CGBack i f1 ⇒ match nthWithTail i gs with
| Some (backG, gs1) ⇒ topGraph2tree gs1 (fun c ⇒ f (f1 c)) backG
| None ⇒ topGraph2tree nil (fun c ⇒ f (f1 c)) topG
end
| CGForth c gs1 ⇒ topGraph2tree gs f (TCGForth c gs1)
end.

Definition graph2tree (g : TopCfgGraph) : CfgTree :=
graph2treeRec g nil (fun c ⇒ c) (top2graph g).

Fig. 7: Unfolding a graph into a tree

Fixpoint evalGraphRec (topG: TopCfgGraph) (gs: list TopCfgGraph)
(f : Cfg → Cfg) (env : EvalEnv) (g : CfgGraph) (n: nat) {struct n} : option Val :=
match n with
| 0 ⇒ None
| S n ⇒
let evalTopGraph (gs: list TopCfgGraph) (f : Cfg → Cfg) (g : TopCfgGraph)

: option Val :=
match g with
| TCGForth c subGs ⇒
let stepf (p: EvalEnv × list (option Val)) (g1 : CfgGraph)
: EvalEnv × list (option Val) :=
let env := fst p in let ovs := snd p in
let ov := evalGraphRec topG (g::gs) f env g1 n in
(evalNodeStep env (f c) ovs ov, ov::ovs) in

evalNodeResult env (f c)
(snd (fold left stepf subGs (evalNodeInitEnv env (f c), nil)))

end in
match g with
| CGBack i f1 ⇒
let g gs := match nthWithTail i gs with

Some p ⇒ p | None ⇒ (topG, nil) end in
evalTopGraph (snd g gs) (fun c ⇒ f (f1 c)) (fst g gs)
| CGForth c subGs ⇒ evalTopGraph gs f (TCGForth c subGs)
end

end.
Definition evalGraph (env : EvalEnv) (g : TopCfgGraph) (n: nat) : option Val :=

evalGraphRec g nil (fun c ⇒ c) env (top2graph g) n.

Fig. 8: Graph interpreter

186 Dimitur Nikolaev Krustev

4.4 Graph semantics correctness

It is not hard to spot that the definition of evalGraphRec has many similarities
to the definitions of evalCfgTree and graph2treeRec. Actually evalGraphRec can
be seen as a manually fused composition of the other 2 functions. This fact is
formally verified by the following theorem, which is one of the 2 key intermediate
results used in establishing MRSC correctness:
Theorem evalGraph evalCfgTree: ∀ env g,
EvalEquiv (evalGraph env g) (evalCfgTree env (graph2tree g)).

5 Multi-result Supercompilation

5.1 Definition

We need 2 more primitives (besides mrscSteps) in order to define a generic
multi-result supercompiler. As we have already explained, we assume a whistle
in the form of an inductive bar (Fig. 9). The signature of the folding primitive –
tryFold – is determined by our decision how to encode backward nodes: if folding
is possible, tryFold must return:

– a valid index into the list of previous configurations (tryFold length);
– a configuration-transforming function, which will turn the old configuration

(higher in the tree) into the current one (tryFold funRelatesCfgs).

The requirement that no folding should be possible with empty history – try-
Fold nil None – is quite natural. The last requirement about tryFold – try-
Fold funCommutes – deserves more attention. It states that any configuration
transformation, returned by folding, commutes (in a way precisely defined in Fig.
9) with mrscSteps. The reason for this assumption is that it permits us to prove
that unfolding a mrsc-produced graph will always result into a tree that can
also be obtained through driving alone. The latter property is key for enabling
modular verification of the different supercompilers produced by the proposed
approach. This requirement is further discussed in Sec. 6.

Apart from folding, the rest of the mrsc definition is very similar to the one
proposed by Grechanik et al. [4]. The main algorithm is encoded by the recursive
function mrscHelper. The top-level function mrsc may seem complicated at first,
but it is only because it uses some Coq-specific idioms to convert the final list of
results from type CfgGraph to type TopCfgGraph. If we ignored this conversion,
the definition would become:
mrsc (c: Cfg) : list CfgGraph := mrscHelper (inductiveBar whistle) c.

5.2 Containment of Graphs in Driving Tree Sets

As already hinted, the following containment result is the second key theorem
necessary for ensuring mrsc correctness:
Theorem graph2tree mrsc In buildCfgTrees: ∀ c g,

In g (mrsc c) → TreeInSet (graph2tree g) (buildCfgTrees c).
It opens the way to replace establishing the semantic correctness of graphs

with verifying only the semantic correctness of trees.

An Approach for Modular Verification of Multi-Result Supercompilers 187

Definition CommutesWithSteps (f : Cfg → Cfg) :=
∀ c, mrscSteps (f c) = map (map f) (mrscSteps c).

Variable tryFold : list Cfg → Cfg → option (nat × (Cfg → Cfg)).
Hypothesis tryFold nil None: ∀ c, tryFold nil c = None.
Hypothesis tryFold length: ∀ h c i f, tryFold h c = Some (i, f) → i < length h.
Hypothesis tryFold funRelatesCfgs: ∀ h c i f c1 h1,

tryFold h c = Some (i, f) → nthWithTail i h = Some (c1, h1) → c = f c1.
Hypothesis tryFold funCommutes: ∀ h c i f,

tryFold h c = Some (i, f) → CommutesWithSteps f.
Variable whistle: BarWhistle Cfg.

Fig. 9: Remaining MRSC primitives

Fixpoint mrscHelper (h: list Cfg)
(b: Bar (dangerous whistle) h) (c: Cfg) {struct b} : list CfgGraph :=
match tryFold h c with
| Some (n, f) ⇒ CGBack n f :: nil
| None ⇒
match dangerousDec whistle h with
| left ⇒ nil
| right Hdang ⇒
match b in (Bar h) return (¬ dangerous whistle h → list CfgGraph)
with
| BarNow h’ bz ⇒ fun (Hdang : ¬ dangerous whistle h’) ⇒

match Hdang bz with end
| BarLater h’ bs ⇒ fun (: ¬ dangerous whistle h’) ⇒

map (CGForth c) (flat map (fun css : list Cfg ⇒
listsProd (map (mrscHelper (bs c)) css)) (mrscSteps c))

end Hdang
end

end.
Definition mrsc (c: Cfg) : list TopCfgGraph :=
let gs := mrscHelper (inductiveBar whistle) c in
mapWithInPrf gs

(fun g Hin ⇒ match g return = g → TopCfgGraph with
| CGBack n f ⇒ fun Heq ⇒
let Hin’ := eq rect g (fun g ⇒ In g gs) Hin Heq in
match mrscHelper nil notBack Hin’ with end
| CGForth c gs ⇒ fun ⇒ TCGForth c gs
end eq refl).

Fig. 10: Big-step multi-result supercompilation

5.3 MRSC Correctness

The next theorem is the main result in this article. Its proof directly relies on the
intermediate theorems evalGraph evalCfgTree and graph2tree mrsc In buildCfgTrees,
and also on the key assumption evalCfg evalCfgTree equiv. The last assumption
is the main task left to the user of the approach to verify individually in each
particular case.

188 Dimitur Nikolaev Krustev

Theorem mrsc correct: ∀ env g c, In g (mrsc c) →
EvalEquiv (evalGraph env g) (evalCfg env c).

6 Current Status and Future Work

The main disadvantage of the current approach is that it has not been field-
tested yet on specific supercompilers. We have actually started to build a simple
supercompiler for SLL, a basic first-order functional language often used (under
different names, and with small variations) in many works on supercompila-
tion [9,17]. Although the verification of this supercompiler – using the proposed
approach – is not complete, it has already pointed to some improvements. One
of these improvements is already present – evaluation functions take an environ-
ment as input (and some return a modified environment). Environment-based
evaluation (of trees/graphs of configurations) is useful in typical supercompilers
for at least two reasons:

– Contractions in the tree/graph often take the form of patterns, which bind
variables inside the corresponding subtree. A successful pattern match will
supply values for these bound variables. Environment-based interpreters are
a well-known and well-working approach to keep track of such new bindings
during the evaluation of subexpressions.

– Generalization is often represented in the tree/graph with let-expressions (or
something working in a similar way), whose evaluation by the tree interpreter
also involves passing new bindings for the evaluation of sub-trees. Moreover,
it is difficult to pass such bindings using a substitution operation, as we
bind the let-bound variable not to a configuration, but to a computation,
which may yield the value of the corresponding subtree. Environment-based
evaluation appears easier to use in this case.

The introduction of evaluation environments as an abstract data type has
made impossible to provide general proofs of monotonicity for the tree and for
the graph interpreter. Such monotonicity properties can still be very useful, for
example when the user proves equivalence between the tree interpreter and the
reference interpreter of configurations. We plan to try to recover these general
proofs in the future, by postulating some user-defined ordering of environments,
and using it to formulate monotonicity requirements for the language-specific
building blocks of the tree interpreter.

Another limitation made apparent by the SLL supercompiler involves the pre-
cise definition of configuration equality, which is used in several places (in the
definition of membership inside our representation of tree sets; in the required
properties of the folding primitive, etc.). Currently we use strict syntactic equal-
ity, but this may prove too restrictive in many practical cases. For example, if the
configuration can bind variables, alpha-equivalence may be a much more useful
notion of equality. We plan to fix this deficiency by introducing an abstract con-
figuration equality relation, and basing other definitions on this user-supplied
relation instead of the built-in syntactic equality.

An Approach for Modular Verification of Multi-Result Supercompilers 189

We use a general assumption, that if we unfold a graph resulting from su-
percompilation into a tree, this tree must be among the trees generated by
multi-result driving alone. The commutativity condition on configurations pro-
duced by folding is imposed exactly in order to make a general proof of this
assumption. Both the general assumption and the folding requirement appear
to be satisfied in typical cases (such as renaming-based folding, or folding only
identical configurations). There are cases, however, where both the assumption
and the condition do not hold. Consider folding based on substitution instead of
renaming (take some unspecified functional language)3. In this case we can have
a path fragment in the tree:

. . . f(x) −→ . . . −→ f(5)

where folding is possible as there is a substitution converting f(x) into f(5).
Assume further that f is defined by pattern matching on its argument. In this
case the tree unfolded from the graph cannot be produced by driving alone,
because:

– driving f(5) will proceed with a deterministic reduction, giving rise to a
single subtree;

– the graph at node f(x) will have 2 subgraphs corresponding to the 2 clauses
in the definition of f (assuming Peano representation of natural numbers).
Making a copy of this graph will give 2 subtrees at node f(5) as well.

Note, however, that we can achieve similar effect with a suitable combination of
generalization and renaming-based folding. The relevant path fragment in this
case will be:

. . . f(x) −→ . . . −→ f(5) −→ let y = 5 in f(y) −→ f(y)

Here folding by renaming from f(x) to f(y) is possible. So, ruling out folding
by substitution does not lead to an important loss of generality. It remains to
be seen if there are other useful kinds of folding ruled out by our assumptions,
and, independently, if we can relax the properties required of the folding prim-
itive, while keeping the overall separation of concerns achieved by the current
approach.

Another possibility for future improvements concerns the requirement of se-
mantics preservation for the tree interpreter (evalCfg evalCfgTree equiv). Recall,
that this assumption must be verified separately for each supercompiler. This
verification step will likely be the most complicated one for specific implemen-
tations based on the current approach. So it is interesting to try to find simpler
sufficient conditions for the tree interpreter, which can replace this requirement.

Finally, note that we completely omit any formalization of residualization
(converting the graph of configurations back into a program in the object lan-
guage). To complete the proof of correctness of a specific supercompiler, the
user must provide a separate proof for the correctness of residualization. Still,
3 Example suggested by Ilya Klyuchnikov

190 Dimitur Nikolaev Krustev

the proposed approach may offer some help: as we have established the equiv-
alence in the general case between the tree and the graph interpreter (for trees
produced by unfolding a graph), it suffices for the user to make a specific proof
of equivalence between the residualized program and the tree interpreter – which
can be slightly simpler that equivalence w.r.t. the graph interpreter, as folding
has no impact on the tree interpreter.

An interesting long-term goal would be to try to apply a similar approach for
modular verification to other generalizations of classical supercompilation, such
as distillation [5].

7 Related Work

Multi-result supercompilation was introduced by Klyuchnikov et al. [10] and
more formally described in later work by the same authors [11], as a gener-
alization of classical [18, 19] and non-deterministic supercompilation. Already
in the second work on MRSC, there is a clear separation between the high-level
method of multi-result supercompilation, which can be described in a completely
language-neutral way, and the set of language-specific basic operations needed
to obtain a complete working supercompiler. The recent Agda formalization of
“big-step” MRSC [4] is based on an even simpler set of basic operations encap-
sulating the language-specific parts of the supercompiler. Our work is directly
based on this Agda formalization, with some changes in the treatment of folding
necessitated by our different goals. We do not use a compact representation for
the set of graphs produced by MRSC, but reuse the same idea to represent the
set of trees obtained by multi-result driving. It should be easy to merge the 2
formalizations for use cases that may need both an efficient way to represent and
manipulate the result set of MRSC and a setting for verifying the correctness of
these results.

A similar generic framework for implementing and verifying classical-style
supercompilers has been proposed by the author [13]. The current work can be
seen as extending that framework to cover the case of multi-result supercom-
pilation. The current formalization is actually simpler, despite the fact that it
covers a more general method. This is partly due to the inherent simplicity of
MRSC itself, and also a result of incremental improvements based on experience
with the previous framework. In particular, we hope the current approach will
provide better treatment for generalization. Our stronger assumption of tree-
interpreter semantics preservation permits us to have an unified general proof of
both soundness and completeness of MRSC, while [13] deals only with soundness.

Taking a wider perspective – about supercompilation and related techniques
in general – there are numerous works describing specific supercompilers, includ-
ing correctness proofs; too many to attempt to enumerate them here. There are
also some more general approaches about establishing supercompiler correctness,
which are not tied to specific implementations. Sand’s improvement theorem [16],
for example, gives a general technique for proving semantics preservation of dif-

An Approach for Modular Verification of Multi-Result Supercompilers 191

ferent program transformations, but only for the case of a functional language
used as input.

There exist also a few (mostly) language-neutral descriptions of classical su-
percompilation as a general technique. Jones presents an abstract formulation of
driving [6], with only a small number of assumptions about the object language.
Still, some of these assumptions seem geared towards simple imperative or first-
order tail-recursive functional languages. Also, termination and generalization
are not treated there. Klimov [7] covers the complete supercompilation process,
and proves a number of interesting high-level properties. To achieve these results,
Klimov assumes a specific object language (first-order functional) and data do-
main. It seems feasible, however, to generalize this approach by abstracting from
the details of the object language.

8 Conclusions

We have described the current state of a general approach for modular verifica-
tion of arbitrary multi-result supercompilers. The main correctness property we
are after is preservation of object language semantics by the supercompiler. One
key observation that enables our modular approach is that MRSC can be de-
fined in terms of a reusable top-level algorithm + a set of independent building
blocks, which must be implemented anew for each specific supercompiler. We
propose to apply a similar kind of modularity for the verification of correctness:
general reusable theorems concerning the top-level algorithm, which rely on a set
of smaller independent properties concerning the building blocks (driving, fold-
ing, . . .). Only the latter set of properties must be verified from scratch in each
case, the general theorems can be reused. Another, more specific idea concern-
ing verification modularization is to consider the unfolding of MRSC-produced
graphs of configurations back into trees of configurations. If we can show (as we
do, under certain assumptions), that the unfolded graph will always belong to
the set of trees produced by driving (+ generalization) alone, we can then ignore
completely graphs and folding during the verification process. What is needed
in this case is to only verify semantics preservation for the set of trees produced
by multi-result driving.

We stress again, that although the current implementation of the approach is
inside a proof assistant (Coq), and we speak of formal verification, the approach
can be equally useful for verification by testing. Most modern languages already
feature property-based testing tools mostly inspired by the Haskell QuickCheck
library [2]. The set of correctness assumptions we have identified is perfectly
suitable as a starting point of such property-based testing. So, even without doing
formal computer-checked proofs, implementers of multi-result supercompilers
can use the proposed approach to gain confidence in the correctness of their
software.

We must still warn that we are reporting the current state of a work in
progress. As we test the approach on specific supercompilers, we shall likely find

192 Dimitur Nikolaev Krustev

further opportunities for improving the framework and making it more easily
applicable.

Acknowledgments The author would like to thank Sergei Romanenko and
Ilya Klyuchnikov for the insightful discussions related to the topic of this article.

References

1. Chlipala, A.: Certified Programming with Dependent Types. MIT Press (2013),
http://adam.chlipala.net/cpdt/

2. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Odersky, M., Wadler, P. (eds.) ICFP. pp. 268–279. ACM
(2000)

3. Coquand, T.: About Brouwer’s fan theorem. Revue Internationale de Philosophie
230, 483–489 (2004)

4. Grechanik, S.A., Klyuchnikov, I.G., Romanenko, S.A.: Staged multi-result super-
compilation: filtering before producing. preprint 70, Keldysh Institute (2013)

5. Hamilton, G.W.: Distillation: extracting the essence of programs. In: Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation. pp. 61–70. ACM (2007)

6. Jones, N.D.: The essence of program transformation by partial evaluation and
driving. In: Bjoner, D., Broy, M., Zamulin, A. (eds.) Perspectives of System In-
formatics’99. Lecture Notes in Computer Science, vol. 1755, pp. 62–79. Springer
Berlin Heidelberg (2000)

7. Klimov, A.V.: A program specialization relation based on supercompilation and
its properties. In: Turchin, V. (ed.) International Workshop on Metacomputation
in Russia, META 2008 (2008)

8. Klimov, A.V., Klyuchnikov, I.G., Romanenko, S.A.: Automatic verification of
counter systems via domain-specific multi-result supercompilation. In: Klimov,
A.V., Romanenko, S.A. (eds.) Proceedings of the Third International Workshop
on Metacomputation (META 2012). pp. 112–141 (2012)

9. Klyuchnikov, I.: The ideas and methods of supercompilation. Practice of Functional
Programming (7) (2011), in Russian

10. Klyuchnikov, I., Romanenko, S.A.: Multi-result supercompilation as branching
growth of the penultimate level in metasystem transitions. In: Clarke, E.M., Vir-
bitskaite, I., Voronkov, A. (eds.) Ershov Memorial Conference. Lecture Notes in
Computer Science, vol. 7162, pp. 210–226. Springer (2011)

11. Klyuchnikov, I.G., Romanenko, S.A.: Formalizing and implementing multi-result
supercompilation. In: Klimov, A.V., Romanenko, S.A. (eds.) Proceedings of the
Third International Workshop on Metacomputation (META 2012). pp. 142–164
(2012)

12. Krustev, D.: A simple supercompiler formally verified in Coq. In: Nemytykh, A.P.
(ed.) Proceedings of the Second International Workshop on Metacomputation in
Russia (META 2010). pp. 102–127 (2010)

13. Krustev, D.: Towards a framework for building formally verified supercompilers in
Coq. In: Loidl, H.W., Peña, R. (eds.) Trends in Functional Programming, Lecture
Notes in Computer Science, vol. 7829, pp. 133–148. Springer Berlin Heidelberg
(2013), http://dx.doi.org/10.1007/978-3-642-40447-4_9

An Approach for Modular Verification of Multi-Result Supercompilers 193

14. Mendel-Gleason, G.: Types and verification for infinite state systems. PhD thesis,
Dublin City University, Dublin, Ireland (2011)

15. Picard, C.: Représentation coinductive des graphes. These, Université Paul
Sabatier - Toulouse III (Jun 2012), http://tel.archives-ouvertes.fr/
tel-00862507

16. Sands, D.: Proving the correctness of recursion-based automatic program transfor-
mations. Theor. Comput. Sci. 167(1&2), 193–233 (1996)

17. Sørensen, M.H.: Turchin’s Supercompiler Revisited: an Operational Theory of Posi-
tive Information Propagation. Master’s thesis, Københavns Universitet, Datalogisk
Institut (1994)

18. Sørensen, M.H., Glück, R.: Introduction to supercompilation. In: Hatcliff, J., Mo-
gensen, T., Thiemann, P. (eds.) Partial Evaluation: Practice and Theory. Lecture
Notes in Computer Science, vol. 1706, pp. 246–270. Springer-Verlag (1999)

19. Turchin, V.: The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 292–325 (July 1986)

20. Vytiniotis, D., Coquand, T., Wahlstedt, D.: Stop when you are almost-full: Ad-
ventures in constructive termination. In: Beringer, L., Felty, A. (eds.) Interactive
Theorem Proving. Lecture Notes in Computer Science, vol. 7406, pp. 250–265.
Springer Berlin Heidelberg (2012)

A Method of a Proof of Observational
Equivalence of Processes

Andrew M. Mironov

The Institute of Informatics Problems of the Russian Academy of Sciences
amironov66@gmail.com

Abstract. In the paper we introduce a concept of a process with mes-
sage passing and present a method of checking observational equivalence
of processes with message passing. The presented method is illustrated
by an example of a verification of sliding window protocol.

Keywords: processes, message passing, verification, sliding window pro-
tocol

1 Introduction

The problem of formal representation and verification of discrete processes is
one of the most important problems in computer science. There are several
approaches to this problem, the main of them are: CCS and π-calculus [1], [2],
CSP and its generalizations [3], temporal logic and model checking [4], Petri
nets [5], process algebras [6], communicating finite-state machines [7].

In the present paper we introduce a new model of discrete processes, which
is a synthesis of Milner’s model of processes [1] and the model of communicat-
ing finite-state machines [7]. Discrete processes are represented in our model
as graphs, edges of which are labelled by operators. These operators consist of
internal actions and communication actions. Proofs of correctness of processes
are represented by sets of formulas, associated with pairs of states of analyzed
processes. This method of verification of processes is a synthesis of Milner’s ap-
proach related on the concept of an observational equivalence [1] and Floyd’s
inductive assertion method [8]. For a simplification of an analysis of processes
we introduce a simplification operation on processes. With use this operation it
is possible to reduce a complexity of verification of processes. We illustrate an
advantage of the proposed model and the verification method on the example of
verification of a two-way sliding window protocol.

2 Motivation, advantages of the proposed approach and
its comparison with other works

2.1 Motivation of the proposed approach

The main disadvantage of modern methods of verification of discrete processe is
their large complexity. More precisely,

A Method of a Proof of Observational Equivalence of Processes 195

– the main disadvantage of verification methods based on model checking ap-
proach is a high computational complexity related to the state explosion
problem, and

– disadvantages of methods based on theorem proving approach are related
with a high complexity of construction of corresponging theorems and their
proofs, and also with an understanding of these proofs.

For example, in recent paper [9] a complete presentation of proofs of theorems
related to verification of two-way sliding window protocol takes a few dozen
pages of a complex mathematical text.

The main motivation for the proposed approach to modeling and verification
of discrete systems by checking of observational equivalence of corresponded pro-
cesses with message passing is to simplify and make more obvious the following
aspects of modeling and analysis of discrete systems: representation of mathe-
matical models of analyzed systems, construction of proofs of correctness of the
systems, and understanding of these proofs by any who is not a strong expert in
the mathematical theory of verification of discrete systems.

2.2 Advantages of the proposed approach

The proposed mathematical model of processes with message passing allows to
construct such mathematical models of analysed systems that are very similar
to an original description of these systems on any imperative programming lan-
guage. In section 10 we give an example of such model that corresponds to a
C-program describing a sliding window protocol using go back n (the program
was taken from book [10], section 3.4.2).

The main advantage of the proposed approach is a possibility to use a simpli-
fication operation of models of analyzed systems, that allows essentially simplify
the problem of verification of these models. In section 10 we present a result of
such simplification for the above model of a sliding window protocol: this model
can be simplified to a model with only one state. It should be noted also that
the simplified models allow more clearly understand main features of analyzed
systems, and facilitate a construction of correctness proofs for analyzed systems.

If an analyzed property of a system has the form of a behavior which is
described by some process, for example, in the case when

– an analyzed system is a network protocol, and
– a property of this system is a description of an external behavior of this

protocol (related to its interaction with a higher-level protocol)

then a proof of a correctness of such system in this model is a set of formulas
associated with pairs of states, the first of which is a state of the analyzed system,
and the second is a state of a a process which describes a property of the analyzed
system.

In section 10 we give an example of such proof, which is a small set of simple
formulas. These formulas can be naturally derived from a simplified model of an
analyzed protocol.

196 Andrew M. Mironov

Another advantage of the proposed approach is a possibility to verify systems
with unbounded sets of states. One of examples of such systems is the above
sliding window protocol using go back n.

2.3 Comparison with other works

In this section we present an overview of papers related to verification of message
passing systems, which are most relevant to the present paper.

The paper [9] deals with modeling and manual verification in the process
algebraic language µCRL. Authors use the theorem prover PVS to formalize
and to mechanically prove the correctness of a protocol using selective repeat (a
C-program describing this protocol is presented in section 3.4.3 of the book [10]).
The main disadvantage of this work is a large complexity of proofs of theorems
related to verification of this protocol. This protocol can be verified more simply
with use of the approach proposed in the present paper.

There are a lot of works related to verification of systems with message
passing based on temporal logic and model checking approach. Most relevant
ones to the present paper are [11], [12], [13], [14], [15], [16], [17]. The most
deficiency of all of them is restricted abilities: these methods allow verify only
finite state systems.

Among other approaches it should be noted approaches with use of first order
logic and assertional verification: [18], [19], and approaches with use of process
algebra: [20], [21], [22], [23]. The most deficiency of these approaches is a high
complexity of construction of proofs of correctness of analyzed systems.

3 Auxiliary concepts

3.1 Terms

We assume that there are given a set X of variables, a set D of values, a set
C of constants, and a set F of function symbols. Any constant from C is
interpreted by a value from D, and any function symbol from F is interpreted
by an operation on D.

We assume that C contains constants 0 and 1, and F contains boolean func-
tion symbols ∧,∨,→, which correspond to standard boolean operations on {0, 1}.

The set E of terms is defined in the standard way. Variables and constants
are terms. Other terms have the form f(e1, . . . , en), where f ∈ F , and e1, . . . , en
are terms. For each e ∈ E a set of all variables occurring in e is denoted by Xe.

If X ⊆ X , then a valuation of variables of X is a correspondence ξ, that
associates each variable x ∈ X with a value xξ ∈ D. We denote by the record
X• the set of all valuations of variables from X. For each e ∈ E , each X ⊇ Xe

and each ξ ∈ X• the record eξ denotes an object called a value of e on ξ
and defined in the standard way. We assume that terms e1 and e2 are equal iff
∀ ξ ∈ (Xe1 ∪Xe2)• eξ1 = eξ2.

A term e is a formula if ∀ ξ ∈ X•e the value eξ is 0 or 1. The set of all
formulas is denoted by B. The symbols > and ⊥ denote true and false formula

A Method of a Proof of Observational Equivalence of Processes 197

respectively. We shall write formulas of the form ∧(b1, b2), ∨(b1, b2), etc. in a
more familiar form b1 ∧ b2, b1 ∨ b2, etc.

3.2 Atomic operators

We assume that there is given a set N , whose elements are considered as names
of objects that can be sent or received by processes.

An atomic operator (AO) is an object o of one of three forms presented
below. Each pair (o, ξ), where o is an AO, and ξ is a valuation of variables
occurred in o, corresponds to an action oξ, informally defined below.

1. An input is an AO of the form α?x, where α ∈ N and x ∈ X . An action
(α?x)ξ is a receiving from another process an object named α, with a message
attached to this object, this message is assigned to the variable x.

2. An output is an AO of the form α!e, where α ∈ N and e ∈ E . An action
(α!e)ξ is a sending to another process an object named α, to which a message
eξ is attached.

3. An assignment is an AO of the form x := e, where x ∈ X , e ∈ E . An action
(x := e)ξ is an assigning the variable x with the value eξ.

Below we use the following notations.

– For each AO o the record Xo denotes the set of all variables occurred in o.
– If e ∈ E , and o is an assignment, then the record o(e) denotes a term defined

as follows: let o has the form (x := e′), then o(e) is obtained from e by a
replacement of all occurrences of the variable x by the term e′.

– If o is an assignment, and ξ ∈ X•, where Xo ⊆ X ⊆ X , then the record
ξ · o denotes a valuation from X•, defined as follows: let o = (x := e), then
xξ·o = eξ and ∀ y ∈ X \ {x} yξ·o = yξ.

It is easy to prove that if o is an assignment and e ∈ E , then for each ξ ∈ X•,
where Xo∪Xe ⊆ X ⊆ X , the equality o(e)ξ = eξ·o holds. This equality is proved
by an induction on the structure of the term e.

3.3 Operators

An operator is a record O of the form b [o1, . . . , on], where b is a formula called
a precondition of O (this formula will be denoted as 〈O〉), and o1, . . . , on is a
sequence of AOs (this sequence will be denoted as [O]), among which there is at
most one input or output. The sequence [O] may be empty ([]).

If [O] contains an input (or an output) then O is called an input operator
(or an output operator), and in this case the record NO denotes a name
occurred in O. If [O] does not contain inputs and outputs, then we call O an
internal operator.

If 〈O〉 = >, then such precondition can be omitted in a notation of O.
Below we use the following notations.

1. For each operator O a set of all variables occurred in O is denoted by XO.

198 Andrew M. Mironov

2. If O is an operator, and b ∈ B, then the record O ·b denotes an object, which
either is a formula or is not defined. This object is defined recursively as

follows. If [O] empty, then O · b def
= 〈O〉 ∧ b. If [O] = o1, . . . , on, where n ≥ 1,

then we shall denote by the record O \ on an operator obtained from O by
a removing of its last AO, and

– if on = α?x, then O ·bdef= (O\on) ·b, if x 6∈ Xb, and is undefined otherwise

– if on = α!e, then O · b def
= (O \ on) · b

– if on = (x := e), then O · b def
= (O \ on) · on(b).

3. If O is an internal operator, and ξ ∈ X•, where XO ⊆ X ⊆ X , then the
record ξ ·O denotes a valuation from X•, defined as follows: if [O] is empty,

then ξ·Odef
= ξ, and if [O] = o1, . . . , on, where n ≥ 1, then ξ·Odef

= (ξ·(O\on))·on.

It is easy to prove that if O is internal and b ∈ B, then for each ξ ∈ X•,
where XO ∪Xb ⊆ X ⊆ X , such that 〈O〉ξ = 1, the equality (O · b)ξ = bξ·O holds.
This equality is proved by an induction on a lenght of [O].

3.4 Concatenation of operators

Let O1 and O2 be operators, and at least one of them is internal.

A concatenation of O1 and O2 is an object denoted by the record O1 ·O2,
that either is operator or is undefined. This object is defined iff O1 · 〈O2〉 is

defined, and in this case O1 ·O2
def
= (O1 · 〈O2〉)[[O1], [O2]]. It is easy to prove that

– if operators O1, O2 and formula b are such that objects in both sides of the
equality (O1 ·O2) · b = O1 · (O2 · b) are defined, then this equality holds, and

– if operators O1, O2, O3 are such that all objects in both sides of the equality
(O1 ·O2) ·O3 = O1 · (O2 ·O3) are defined, then this equality holds.

4 Processes with a message passing

4.1 A concept of a process with a message passing

A process with a message passing (also called more briefly a process) is a
4-tuple P of the form

P = (SP , s
0
P , TP , IP) (1)

components of which have the following meanings.

– SP is a set of states of the process P .

– s0P ∈ SP is an initial state of the process P .

– TP is a set of transitions of the process P , each transition from TP has the

form s1
O→ s2, where s1, s2 ∈ SP and O is an operator.

– IP ∈ B \ {⊥} is a precondition of the process P .

A Method of a Proof of Observational Equivalence of Processes 199

A transition s1
O→ s2 is called an input, an output, or an internal tran-

sition, if O is an input operator, an output operator, or an internal operator,
respectively.

For each process P

– the record XP denotes the set consisting of

• all variables occurred in any of the transitions from TP , or in IP , and

• a variable atP , which is not occurred in IP , and in transitions from TP ,
the set of values of atP is SP

– the record 〈P 〉 denotes the formula (atP = s0P) ∧ IP .

For each transition t ∈ TP the records Ot, 〈t〉, start(t) and end(t) denote

an operator, a formula and states defined as follows: if t has the from s1
O→ s2,

then

Ot
def
= O, 〈t〉 def= (atP = s1) ∧ 〈O〉, start(t)

def
= s1, end(t)

def
= s2.

If t is an input or an output, then the record Nt denotes the name NOt .

A set Xs
P of essential variables of P is a smallest (w.r.t. inclusion) set

satisfying the following conditions.

– Xs
P contains all variables contained in preconditions and outputs in operators

Ot, where t ∈ TP .

– If P contains an AO x := e and x ∈ Xs
P , then Xs

P contains all variables
occurred in e.

A process P is associated with a graph denoted by the same symbol P .
Vertices of this graph are states of P , and its edges correspond to transitions of

P : each transition s1
O→ s2 corresponds to an edge from s1 to s2 with a label O.

4.2 Actions of processes

An action of a process (or, briefly, an action) is a record of one of the
following three forms.

– α?d, where α ∈ N and d ∈ D. An action of this form is called a receiving
of an object named α with the attached message d.

– α!d, where α ∈ N and d ∈ D. An action of this form is called a sending of
an object named α with the attached message d.

– τ . An action of this form is called a silent action.

A set of all actions is denoted by A.

200 Andrew M. Mironov

4.3 An execution of a process

An execution of a process (1) is a walk on the graph P starting from s0P , with
an execution of AOs occurred in labels of traversed edges. At each step i ≥ 0
of this walk there is defined a current state si ∈ SP and a current valuation
ξi ∈ X•P . We assume that s0 = s0P , 〈P 〉ξ0 = 1, and for each step i of this walk

atξiP = si.
An execution of P on step i is described informally as follows. If there is no

transitions in TP starting at si, then P terminates, otherwise

– P selects a transition t ∈ TP , such that 〈t〉ξi = 1, and if t is an input or an
output, then at the current moment P can receive or send respectively an
object named Nt (i.e. at the same moment there is another process that can
send to P or receive from P respectively an object named Nt). If there is
no such transition, then P suspends until at least one such transition will
appear, and after resumption its execution P selects one of such transitions,

– after a sequential execution of all AOs occurred in the operator Ot of the
selected transition t, P moves to the state end(t).

An execution of each AO o occurred in [Ot] consists of a performing of an
action a ∈ A and a replacement the current valuation ξ on a valuation ξ′, which
is considered as a current valuation after an execution of the AO o. An execution
of an AO o is as follows:

– if o = α?x, then P performs an action of the form α?d, and xξ
′ def

= d, ∀ y ∈
XP \ {x} yξ

′ def
= yξ

– if o = α!e, then P performs the action α!(eξ), and ξ′
def
= ξ

– if o = (x := e), then P performs τ , and xξ
′ def

= eξ, ∀ y ∈ XP \ {x} yξ
′ def

= yξ.

5 Operations on processes

In this section we define some operations on processes which can be used for a
construction of complex processes from simpler ones. These operations are gener-
alizations of corresponded operations on processes defined in Milners’s Calculus
of Communicating Systems [1].

5.1 Parallel composition

The operation of parallel composition is used for building processes, composed
of several communicating subprocesses.

Let Pi = (Si, s
0
i , Ti, Ii) (i = 1, 2) be processes, such that S1 ∩ S2 = ∅

and XP1
∩ XP2

= ∅. A parallel composition of P1 and P2 is a process P =
(S,s

0, T, I), where

S
def
= S1 × S2, s0

def
= (s01, s

0
2), I

def
= I1 ∧ I2

and T consists of the following transitions:

A Method of a Proof of Observational Equivalence of Processes 201

– for each transition s1
O→ s′1 of the process P1, and each state s of P2 the

process P has the transition (s1, s)
O→ (s′1, s)

– for each transition s2
O→ s′2 of the process P2, and each state s of the process

P1 the process P has the transition (s, s2)
O→ (s, s′2)

– for each pair of transition of the form

{
s1

O1→ s′1 ∈ TP1

s2
O2→ s′2 ∈ TP2

where one of the

operators O1, O2 has the form (O′1 · [α?x]) · O′′1 , and another operator has

the form (O′2 · [α!e]) ·O′′2 , the process P has the transition (s1, s2)
O→ (s′1, s

′
2),

where 〈O〉 = 〈O1〉 ∧ 〈O2〉 and [O] =
(

(O′1 ·O′2) · [x := e]
)
· (O′′1 ·O′′2).

A parallel composition of P1 and P2 is denoted by the record P1 |P2.
If S1 ∩ S2 6= ∅ or XP1

∩XP2
6= ∅, then before a construction of the process

P1 |P2 it is necessary to replace states and variables occuring in both processes
on new states or variables respectively.

For any tuple P1, P2, . . . , Pn of processes their parallel composition P1 | . . . |Pn
is defined as the process ((P1 |P2) | . . .) |Pn.

5.2 Restriction

Let P = (S, s0, T, I) be a process, and L be a subset of the set N.
A restriction of P with respect to L is the process P \ L = (S, s0, T ′, I)

which is obtained from P by removing of those transitions that have labels with
the names from L, i.e.

T ′
def
=
{

(s -O s′) ∈ R
∣∣ [O] = [], or NO 6∈ L

}

6 Renaming

The last operation is called a renaming: for any mapping f : N → N and any
process P the record P [f] denotes a process which is called a renaming of P and
is obtained from P by changing of names occurred in P : any name α occurred
in P is changed on f(α).

If the mapping f acts non-identically only on the names α1, . . . , αn, and maps
them to the names β1, . . . , βn respectively, then the process P [f] can be denoted
also as P [β1/α1, . . . , βn/αn].

6.1 An example of a process defined with use of parallel
composition and restriction

In this subsection we describe a process which is defined with use of the above
operations. This process is an implementation of a distributed algorithm of sep-
aration of sets. The problem of separation of sets has the following form. Let
U, V be a pair of finite disjoint sets, with each element x ∈ U ∪ V is associated
with a number weight(x), called a weight of this element. It is need to convert
this pair to a pair of sets U ′, V ′, such that

202 Andrew M. Mironov

– |U | = |U ′|, |V | = |V ′|
(for each finite set M the notation |M | denotes a number of elements in M)

– ∀u ∈ U ′,∀ v ∈ V ′ weight(u) ≤ weight(v).

Below we shall call U and V as the left set and the right set, respectively.

The problem of separation of sets can be solved by an execution of several
sessions of exchange elements between these sets. Each session consists of the
following actions:

– find an element mx with a maximum weight in the left set

– find an element mn with minimum weight in the right set

– transfer

• mx from the left set to the right set, and

• mn from the right set to the left set.

To implement this idea it is proposed a distributed algorithm, defined as a
process of the form

(Small | Large) \ {α, β} (2)

where

– the process Small executes operations associated with the left set, and

– the process Large executes operations associated with the right set.

The restriction of the actions with names α and β in (2) means that a trans-
mission of objects with names α and β can be executed only between the sub-
processes Small and Large, i.e. such objects can not be transmitted outside the
process (2).

A flow graph (i.e. a relation between components) corresponded to this pro-
cess has the form '

&

$

%

'

&

$

%

e
u

u
e

-

�

α

β
Small Large

Below we shall use the following notations: for each subset W ⊆ U ∪ V
the records max(W) and min(W) denote an element of W with maximum and
minimum weight, respectively. A similar meaning have the records max(W) and
min(W), where W is a a variable whose values are subsets of U ∪ V .

The process Small has the following form:

A Method of a Proof of Observational Equivalence of Processes 203

����
�
�
�
�

����

����

����

A

B

C

?
-

6

@
@

@
@
@

@
@

@@I

mx := max(S)
α! mx

S := S \ {mx}

β? x
S := S ∪ {x}
mx := max(S)

〈x ≥ mx〉
U ′ := S

〈x < mx〉

(3)

(a double circle denotes an initial state).
An initial condition of the process Small is (S = U).
The process Large has the following form:����

�
�
�
�

����

����

����

a

b

c

?
-

6

@
@

@
@
@

@
@

@@I

α? y
L := L ∪ {y}
mn := min(L)

β! mn
L := L \ {mn}
mn := min(L)

〈y ≤ mn〉
V ′ := L

〈y > mn〉

(4)

An initial condition of the process Large is (L = V).

7 Realizations of processes

7.1 Realizations of AOs and sequences of AOs

A realization of an AO o is a triple (ξ, a, ξ′), such that

– ξ, ξ′ ∈ X•, where Xo ⊆ X ⊆ X , and a ∈ A
– if o = α?x, then a = α?(xξ

′
) and ∀ y ∈ X \ {x} yξ

′
= yξ

– if o = α!e, then a = α!(eξ) and ξ′ = ξ
– if o = (x := e), then a = τ and ξ′ = ξ · o.

Let o1, . . . , on be a sequence of AOs which contains at most one input or
output. A realization of o1, . . . , on is a triple (ξ, a, ξ′), such that

– ξ, ξ′ ∈ X•, where X ⊆ X and a ∈ A

204 Andrew M. Mironov

– if n = 0, then ξ′ = ξ and a = τ , otherwise there exists a sequence

(ξ0, a1, ξ1), (ξ1, a2, ξ2), . . . , (ξn−1, an, ξn) (5)

where ξ0 = ξ, ξn = ξ′, ∀ i = 1, . . . , n (ξi−1, ai, ξi) is a realization of oi, and
a = τ , if each ai in (5) is equal to τ , otherwise a coincides with that ai,
which is different from τ .

7.2 Realization of transitions

Let P be a process of the form (1), and t ∈ TP .
A realization of t is a triple (ξ1, a, ξ2), where ξ1, ξ2 ∈ X•P and a ∈ A, such

that 〈t〉ξ1 = 1 and (ξ1 · (atP := end(t)), a, ξ2) is a realization of [Ot].
The following properties hold.

– If a transition t is internal or is an output, then for each ξ ∈ X•P , such that
〈t〉ξ = 1, there exist a unique ξ′ ∈ X•P and a unique a ∈ A, such that (ξ, a, ξ′)
is a realization of t. We shall denote such ξ′ by ξ · t.

– If a transition t is an input, then for each ξ ∈ X•P , such that 〈t〉ξ = 1,
and each d ∈ D there exists a unique ξ′ ∈ X•P , such that (ξ,Nt?d, ξ

′) is a
realization of t. We shall denote such ξ′ by ξ · td.

7.3 Realizations of processes

A realization of a process P is a graph P r having the following components.

– The set SrP of vertices of P r is the disjoint union X•P ∪ {P 0}.
– The set T rP of edges of P r consists of the following edges:
• for each realization (ξ1, a, ξ2) of any t ∈ TP the graph P r has an edge

from ξ1 to ξ2 with a label a, and
• for each ξ ∈ X•P , such that 〈P 〉ξ = 1, and each edge of P r from ξ to ξ′

with a label a the graph P r has an edge from P 0 to ξ′ with a label a.

We shall use the following notations: for any pair v, v′ of vertices of P r

– the record v1
a→ v2 denotes an edge from v1 to v2 with a label a

– v
τ∗→ v′ means that either v = v′ or ∃ v0, v1, . . . , vn : ∀ i = 1, . . . , n the graph

P r has an edge vi−1
τ→ vi, and v0 = v, vn = v′.

– v
τ∗aτ∗−→ v′ (where a ∈ A) means that ∃ v1, v2 : the graph P r has an edge

v1
a→ v2, and v

τ∗−→ v1, v2
τ∗−→ v′.

8 Observational equivalence of processes

8.1 A concept of observational equivalence of processes

Processes P1 and P2 are said to be observationally equivalent if P r1 and P r2
are observationally equivalent in Milner’s sense [1], i.e. there exists µ ⊆ SrP1

×SrP2
,

such that

A Method of a Proof of Observational Equivalence of Processes 205

1. (P 0
1 , P

0
2) ∈ µ

2. if (v1, v2) ∈ µ and v1
τ→ v′1, then ∃ v′2 : v2

τ∗→ v′2, (v′1, v
′
2) ∈ µ,

if (v1, v2) ∈ µ and v2
τ→ v′2, then ∃ v′1 : v1

τ∗→ v′1, (v′1, v
′
2) ∈ µ

3. if (v1, v2) ∈ µ and v1
a→ v′1, where a 6= τ , then ∃ v′2 : v2

τ∗aτ∗−→ v′2, (v′1, v
′
2) ∈

µ,

if (v1, v2) ∈ µ and v2
a→ v′2, where a 6= τ , then ∃ v′1 : v1

τ∗aτ∗−→ v′1, (v′1, v
′
2) ∈ µ

The record P1 ≈ P2 means that P1 and P2 are observationally equivalent.
A lot of problems related to verification of discrete systems can be reduced

to the problem to prove that P1 ≈ P2, where the process P1 is a model of a
system being analyzed, and P2 is a model of some property of this system. In
section 10 we consider an example of a proof that P1 ≈ P2, where P1 is a model
of the sliding window protocol, and P2 is a model of its external behavior.

8.2 A method of a proof of observational equivalence of processes

In this section we present a method of a proof of observational equivalence of
processes. This method is based on theorem 1. To formulate and prove this
theorem, we introduce auxiliary concepts and notations.

1. Let P be a process, and s, s′ ∈ SP . A composite transition (CT) from s
to s′ is a sequence T of transitions of P of the form

s = s0
O1→ s1, s1

O2→ s2, . . . sn−1
On→ sn = s′ (6)

such that there is at most one input or output operator among O1, . . . , On,
and there are defined all concatenations in the expression

(. . . (O1 ·O2) · . . .) ·On (7)

Sequence (6) may be empty, in this case s = s′. If CT T is not empty and
has the form (6), then the record OT denotes a value of the expression (7).

If CT T is empty, then OT
def
= [].

We shall use for CTs the same concepts and notation as for ordinary transi-
tions (start(T), end(T), NT etc.). A CT T is said to be an input, an output,
or an internal iff OT is an input operator, an output operator, or an internal
operator, respectively.
A concept of a realization of a CT is defined by analogy with the concept
of a realization of a transition (see section 7.2). This concept has properties
similar to properties of a realization of a transition, in particular:
(a) if a CT T is internal or is an output, then for each ξ ∈ X•P , such that
〈T 〉ξ = 1, there is a unique ξ′ ∈ X•P and a unique a ∈ A, such that
(ξ, a, ξ′) is a realization of T , we shall denote such ξ′ by the record ξ · T

(b) if a CT T is an input, then for each ξ ∈ X•P , such that 〈T 〉ξ = 1, and each
d ∈ D there is a unique ξ′ ∈ X•P , such that (ξ,NT ?d, ξ′) is a realization
of T , we shall denote such ξ′ by the record ξ · T d.

206 Andrew M. Mironov

2. If b and b′ are formulas, then the record b ≤ b′ is a brief notation of the
proposition that the formula b→ b′ is true.

3. If O1, O2 are operators, and b ∈ B, then the record (O1, O2) · b denotes a
formula defined by a recursive definition presented below. In this definition
we use records of the form O \ o and o(b), which denote an operator and a
formula respectively, defined in section 3.3.
Let [O1] = o1, . . . , on and [O2] = o′1, . . . , o

′
m, then the formula

(O1, O2) · b (8)

is defined as follows:
(a) 〈O1〉 ∧ 〈O2〉 ∧ b, if n = m = 0
(b) (O1 \ on, O2) · on(b), if on is an assignment
(c) (O1, O2 \ o′m) · o′m(b), if o′m is an assignment
(d) ((O1\on), (O2\o′m))·b(z/x, z/y), if on = α?x, o′m = α?y, and b(z/x, z/y)

is a formula obtained from b replacing all occurrences of x and y on a
fresh variable z (i.e. z is not occurred in O1, O2 and b)

(e) ((O1 \ on), (O2 \ o′m)) · ((e1 = e2) ∧ b), if on = α!e1 and o′m = α!e2
(f) ⊥, otherwise.

Theorem 1
Let Pi = (SPi , s

0
Pi
, TPi , 〈Pi〉) (i = 1, 2) be processes such that SP1

∩ SP2
= ∅

and XP1
∩XP2

= ∅. Then P1 ≈ P2, if there exist a set {bs1s2 | si ∈ SPi (i = 1, 2)}
of formulas with variables from (XP1

∪XP2
) \ {atP1

, atP2
}, such that

1. 〈P1〉 ∧ 〈P2〉 ≤ bs0P1
s0P2

2. ∀ (s1
O→ s′1) ∈ TP1

, ∀ s2 ∈ SP2
there exists a set {s2 Ti→ si2 | i ∈ =} of CTs

of P2 such that bs1s2 ∧ 〈O〉 ≤
∨
i∈=

(O,OTi) · bs′1si2
3. ∀ (s2

O→ s′2) ∈ TP2
, ∀ s1 ∈ SP1

there exists a set {s1 Ti→ si1 | i ∈ =} of CTs
of P1 such that bs1s2 ∧ 〈O〉 ≤

∨
i∈=

(OTi , O) · bsi1s′2

Proof.
Since XP1

∩XP2
= ∅, then there is a natural bijection between X•P1

×X•P2

and (XP1
∪XP2

)•. Below we identify these two sets.
We define the relation µ ⊆ SrP1

× SrP2
as follows:

µ
def
= {(ξ1, ξ2) ∈ X•P1

×X•P2
| b(ξ1,ξ2)
at
ξ1
P1
at
ξ2
P2

= 1} ∪ {(P 0
1 , P

0
2)}.

We prove that µ satisfies the conditions from section 8.1.

1. The condition (P 0
1 , P

0
2) ∈ µ follows from the definition of µ.

2. Let (v1, v2) ∈ µ and v1
τ→ v′1. We must prove that

∃ v′2 : v2
τ∗→ v′2, (v′1, v

′
2) ∈ µ (9)

A Method of a Proof of Observational Equivalence of Processes 207

We consider separately the cases v1 = P 0
1 and v1 6= P 0

1 .
If v1 = P 0

1 , then v2 = P 0
2 , and according to definition of the graph P r1 (section

7.3), ∃ ξ1 ∈ X•P1
: 〈P1〉ξ1 = 1 and the graph P r1 has the edge ξ1

τ→ ξ′1 = v′1,

i.e. (ξ1, τ, ξ
′
1) is a realization of a transition s0P1

O1→ s′1 from TP1
, where O1 is

an internal operator.

According to item 2 in the theorem, there exists a set {s0P2

Ti→ si2 | i ∈ =} of
CTs of process P2, such that

bs0P1
s0P2
∧ 〈O1〉 ≤

∨

i∈=
(O1, OTi) · bs′1si2 (10)

Since 〈P2〉 6= ⊥, then ∃ ξ2 ∈ X•P2
: 〈P2〉ξ2 = 1, so

1 = 〈P1〉ξ1 ∧ 〈P2〉ξ2 = (〈P1〉 ∧ 〈P2〉)(ξ1,ξ2) ≤ b(ξ1,ξ2)s0P1
s0P2

(11)

(the last inequality holds according to property 1 in the statement of the
theorem).
According to the definition of a realization of a transition, the equality
〈O1〉ξ1 = 1 holds. This equality, (10) and (11), imply that there is i ∈ =
such that (

(O1, OTi) · bs′1si2
)(ξ1,ξ2)

= 1 (12)

It is easy to prove that the equality

(
(O1, OTi) · bs′1si2

)(ξ1,ξ2)
= bs′1si2

(ξ1·O1,ξ2·OTi) (13)

holds. This equality is an analogue of the equality in the end of section 3.3,
and is proved by induction on the total number of AOs in [O1] and [O2].
(12) and (13) imply that

bs′1si2
(ξ1·O1,ξ2·OTi) = 1 (14)

By the definition of µ and ξ2, the statement (9) in this case (v1 = P 0
1) follows

from the statement

∃ ξ′2 : ξ2
τ∗→ ξ′2, b

(ξ′1,ξ
′
2)

at
ξ′1
P1
at
ξ′2
P2

= 1 (15)

Define ξ′2
def
= (ξ2 · (atP2

:= si2)) ·OTi . Since at
ξ′1
P1

= s′1, and ξ′1 = (ξ1 · (atP1
:=

s′1)) ·O1, then (15) follows from the statements

ξ2
τ∗→ (ξ2 · (atP2

:= si2)) ·OTi (16)

b
((ξ1·(atP1

:=s′1))·O1,(ξ2·(atP2
:=si2))·OTi)

s′1s
i
2

= 1 (17)

(16) follows from the definitions of concepts of a CT and a concatenation

of operators and from the statements atξ2P2
= s0P2

and 〈OTi〉ξ2 = 1. The first

208 Andrew M. Mironov

of these statements follows from the equality 〈P2〉ξ2 = 1, and the second is
justified as follows. The definition of formulas of the form (O1, O2) ·b implies
that the statement (12) can be rewritten as

(
〈O1〉 ∧ 〈OTi〉 ∧ b

)(ξ1,ξ2)
= 1 (18)

where b is some formula. Since XP1
∩XP2

= ∅, then (18) implies the desired
statement 〈OTi〉ξ2 = 1.
(17) follows from (14) and from the assumption that atP1 and atP2 do not
occur in bs′1si2 , O1 and OTi .

Thus, in the case v1 = P 0
1 the property (9) holds.

In the case v1 6= P 0
1 the property (9) can be proved similarly.

3. Let (v1, v2) ∈ µ and v1
a→ v′1, where a 6= τ . We must prove that

∃ v′2 : v2
τ∗aτ∗−→ v′2, (v′1, v

′
2) ∈ µ (19)

(a) At first consider the case v1 = P 0
1 and a = α?d.

If v1 = P 0
1 , then v2 = P 0

2 , and according to the definition of the graph
P r1 (section 7.3), ∃ ξ1 ∈ X•P1

: 〈P1〉ξ1 = 1 and the graph P r1 has the edge

ξ1
a→ ξ′1 = v′1, i.e. (ξ1, a, ξ

′
1) is a realization of a transition t of the form

s0P1

O1→ s′1 from TP1
, where O1 is an input operator. Using the notation

introduced at the end of section 7.2, we can write ξ′1 = ξ1 · td.
Just as in the preceding item, we prove that ∃ ξ2 ∈ X•P2

: 〈P2〉ξ2 = 1, and

there exists a CT s0P2

Ti→ si2 of the process P2, such that the equality

(
(O1, OTi) · bs′1si2

)(ξ1,ξ2)
= 1 (20)

holds, which should be understood in the following sense: for each of valu-
ation ξ ∈ (XP1∪XP2∪{z})• (where z is a variable, referred in the item 3d
of the definition from section 8.2, we can assume that z 6∈ ((XP1 ∪XP2)),

coinciding with ξi on XPi (i = 1, 2), the equality
(

(O1, OTi) ·bs′1si2
)ξ

= 1

holds. In particular, (20) implies that OTi is an input operator, and
NOTi = NO1

= α.

Define ξ′2
def
= ξ2 ·T di . It is easy to prove that ξ2

τ∗aτ∗→ ξ′2, and the statement
(19) in the case v1 = P 0

1 follows from the equality

b
(ξ1·td,ξ2·Tdi)
s′1s

i
2

= 1 (21)

which is justified as follows.
In this case O1 and OTi can be represented as concatenation of the form

O1 = (O′1 · [α?x]) ·O′′1 , OTi = (O′Ti · [α?y]) ·O′′Ti

A Method of a Proof of Observational Equivalence of Processes 209

Definition of formulas of the form (8) implies that

(O1, OTi) · bs′1si2 =

=
(

(O′1 · [α?x]) ·O′′1 , (O′Ti · [α?y]) ·O′′Ti
)
· bs′1si2 =

=
(
O′1 · [α?x], O′Ti · [α?y]

)
·
(

(O′′1 , O
′′
Ti

) · bs′1si2
)

=

= (O′1, O
′
Ti

) ·
((

(O′′1 , O
′′
Ti

) · bs′1si2
)
(z/x, z/y)

)
(22)

(20) and (22) imply the equality

((
(O′′1 , O

′′
Ti) · bs′1si2

)
(z/x, z/y)

)(ξ1·O′1,ξ2·O′Ti)
= 1

Its special case is the equality

((
(O′′1 , O

′′
Ti) · bs′1si2

)
(d/x, d/y)

)(ξ1·O′1,ξ2·O′Ti)
= 1

The last equality can be rewritten as

(
(O′′1 , O

′′
Ti) · bs′1si2

)(ξ1·O′1·(x:=d),ξ2·O′Ti ·(y:=d))
= 1

whence it follows that

(
bs′1si2

)(ξ1·O′1·(x:=d)·O′′1 ,ξ2·O′Ti ·(y:=d)·O′′Ti)
= 1 (23)

It is easy to see that the left side of (23) coincides with the left side of
the equality (21).
Thus, in the case v1 = P 0

1 and a = α?d the property (19) is proven.
In the case v1 6= P 0

1 and a = α?d the property (19) can be proved
similarly.

(b) Now we prove (19), when a = α!d. As in the previous item, we consider
only the case v1 = P 0

1 .
If v1 = P 0

1 , then v2 = P 0
2 , and

– ∃ ξ1 ∈ X•P1
: 〈P1〉ξ1 = 1 and the graph P r1 has the edge ξ1

a→ ξ′1 = v′1,
i.e. (ξ1, a, ξ

′
1) is a realization of a transition t ∈ TP1 of the form

s0P1

O1→ s′1, where O1 is an output operator

– ∃ ξ2 ∈ X•P2
: 〈P2〉ξ2 = 1, and there exists a CT s0P2

Ti→ si2 of the
process P2, such that

(
(O1, OTi) · bs′1si2

)(ξ1,ξ2)
= 1 (24)

(24) implies that OTi is an output operator, and NOTi = NO1
= α.

Define ξ′2
def
= ξ2 ·Ti. For a proof of (19) it is enough to prove the statements

ξ2
τ∗aτ∗→ ξ′2 (25)

210 Andrew M. Mironov

b
(ξ1·t,ξ2·Ti)
s′1s

i
2

= 1 (26)

In this case O1 and OTi can be represented as concatenations of the form

O1 = (O′1 · [α!e1]) ·O′′1 (27)

OTi = (O′Ti · [α!e2]) ·O′′Ti (28)

The definition of formulas of the form (8) implies that

(O1, OTi) · bs′1si2 =

=
(

(O′1 · [α!e1]) ·O′′1 , (O′Ti · [α!e2]) ·O′′Ti
)
· bs′1si2 =

=
(
O′1 · [α!e1], O′Ti · [α!e2]

)
·
(

(O′′1 , O
′′
Ti

) · bs′1si2
)

=

= (O′1, O
′
Ti

) ·
{
e1 = e2
(O′′1 , O

′′
Ti

) · bs′1si2

}
(29)

(24) and (29) imply the equality

{
e1 = e2
(O′′1 , O

′′
Ti

) · bs′1si2

}(ξ1·O′1,ξ2·O′Ti)
= 1

from which it follows that

e
ξ1·O′1
1 = e

ξ2·O′Ti
2 (30)

(
(O′′1 , O

′′
Ti) · bs′1si2

)(ξ1·O′1,ξ2·O′Ti)
= 1 (31)

By assumption, (ξ1, α!d, ξ′1) is a realization of the transition s0P1

O1→ s′1.
From the representation of O1 as a concatenation (27) it follows that

d = e
ξ1·O′1
1 , whence, according to (30) we get the equality d = e

ξ2·O′Ti
2 .

From this and from a representation of OTi as a concatenation (28) it
follows that (ξ2, α!d, ξ2 ·Ti) is a realization of the CT Ti. Since ξ2 ·Ti = ξ′2
and α!d = a, then it follows that we are justified the statement (25).

The statement (26) follows from (31).

Thus, in the case v1 = P 0
1 and a = α!d the property (19) is proven.

In the case v1 6= P 0
1 and a = α!d the property (19) can be proved

similarly

The symmetrical conditions on the relation µ (i.e., second parts of the con-
ditions on µ, presented in second and third items in section 8.1) can be proved
similarly.

A Method of a Proof of Observational Equivalence of Processes 211

9 Simplification of processes

9.1 A concept of a simplification of processes

The concept of a simplification of processes is intended to reduce the problem
of verification of processes.

A simplification of a process P is a sequence of transformations of this
process, each of which is performed according to one of the rules set out below.
Each of these transformations (except the first) is performed on the result of
previous transformation. A result of a simplification is a result of last of these
transformations.

Simplification rules are defined as follows. Let P be a process.

Rule 1 (removing of states).
If s ∈ SP \ {s0P }, and

– s1
O1→ s, . . ., sn

On→ s are all transitions incoming to s

– s
O′1→ s′1, . . ., s

O′m→ s′m are all transitions outgoing from s, and if all these
transitions are internal, then 〈O′i〉 ∧ 〈O′j〉 = ⊥ if i 6= j

– s 6∈ {s1, . . . , sn, s′1, . . . , s′m}
– ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m ∃Oi ·O′j

then s and all transitions related to s are removed from P , and the transitions

si
Oi·O′j−→ s′j (where i = 1, . . . , n, j = 1, . . . ,m) are added to P .

Rule 2 (fusion).

If P has a pair of transitions of the form s1
O→ s2, s1

O′→ s2, and [O] = [O′],

then this pair is replaced by a single transition s1
b[O]−→ s2, where b = 〈O〉 ∨

〈O′〉.
Rule 3 (elimination of unessential assignments).

If P has an AO (x := e), where x 6∈ Xs
P , then this AO is removed from P .

Theorem 2

If P ′ is a result of simplification of P , then P ′ ≈ P .

9.2 An example of a process obtained by a simplification

In this section we present a process which is obtained by a simplification of the
process (2). This process has the following form:

212 Andrew M. Mironov

����
�
�
�
�

����

����

����

����Aa

Ca

Bb

Ac

Cc-
�

6

?

-



mx := max(S)
y := mx
S := S \ {mx}
L := L ∪ {y}
mn := min(L)
L := L \ {mn}
x := mn
S := S ∪ {mn}
mx := max(S)
mn := min(L)




〈(x < mx) ∧ (y > mn)〉

〈(x ≥ mx) ∧ (y ≤ mn)〉
U ′ := S
V ′ := L

〈(x ≥ mx) ∧ (y > mn)〉
U ′ := S

〈(x < mx) ∧ (y ≤ mn)〉
V ′ := L

(32)

This simplified process allows to detect some simple flaws of the algorithm
of separation of sets, for examle a possibility of a deadlock situation: there are
states of the process (32) (namely, Ac and Ca) such that

– there is no transitions starting at these states

– but falling into these states is not a normal completion of the process.

9.3 Another example of a simplification of a process

Suppose we have a system “multiplier”, which has

– two input ports with the names In1 and In2, and

– one output port with the name Out.

An execution of the multiplier is that it

– receives on its input ports two values, and

– gives their product on the output port.

A Method of a Proof of Observational Equivalence of Processes 213

A behavior of the multiplier is described by the process Mul:

����
�
�
�
�A

����B ����C- -

In1 ?x In2 ? y

?
� �Out ! (x · y)

Using this multiplier, we want to build a system “calculator of a square”,
whose behavior is described by the process Square Spec:

����
�
�
�
�

����-
�

In ? z

Out ! (z2)

The desired system is a composition of

– the auxiliary system “duplicator” having

• an input port In, and
• output ports Out1 and Out2

behavior of which is described by the process Dup:

����
�
�
�
�a

����b ����c- -

In ? z Out1 ! z

?
� �Out2 ! z

i.e. the duplicator copies its input to two outputs, and
– the multiplier, which receives on its input ports those values that duplicator

gives.

A process Square, corresponding to such a composition is defined as follows:

Square
def
=

def
=

(
Dup[pass1/Out1, pass2/Out2] |
|Mul[pass1/In1, pass2/In2]

)
\ {pass1, pass2}

A flow graph of the process Square has the form

'

&

$

%

'

&

$

%
e uu
u
e
e

-

-

Dup MulIn Out

pass1

pass2

214 Andrew M. Mironov

However, the process Square does not meet the specification Square Spec
(i.e. Square and Square Spec are not observationally equivalent). This fact is
easy to detect by a construction of a graph representation of Square, which, by
definition of operations of parallel composition, restriction and renaming, is the
following:

����
�
�
�
�aA

����bA

����cA

����aB

����bB

����cB

����aC

����bC

����cC
6� �

Out ! (x · y)

6� �
Out ! (x · y)

?
� �Out ! (x · y)

In ? z In ? z In ? z

? ? ?

@
@
@
@
@
@
@
@
@R �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

x := z y := z

After a simplification of this process we obtain the process

����
�
�
�
�

���� ����A1 A2 A3
-

�

In ? z
x := z
y := z

Out ! (x · y)

-
�

In ? z

Out ! (x · y)
x := z
y := z

(33)

which shows that

– the process Square can execute two input actions together (i.e. without an
execution of an output action between them), and

A Method of a Proof of Observational Equivalence of Processes 215

– the process Square Spec can not do that.

The process Square meets another specification:

Square Spec′
def
=

(
Buf [pass/Out] |
| Square Spec[pass/In]

)
\ {pass}

where Buf is a buffer which can store one message, whose behavior is represented
by the diagram

����
�
�
�
�

����-
�

In ?x

Out !x

A flow graph of Square Spec′ has the form

'
&

$
%

'
&

$
%e uu e-Buf Square SpecIn Out
pass

A simplified process Square Spec′ has the form

����
�
�
�
�

���� ����a1 a2 a3
-

�

In ?x

z := x
Out ! (z2)

-
�

z := x
In ?x

Out ! (z2)

(34)

The statement that Square meets the specification Square Spec′ can be
formalized as

(33) ≈ (34) (35)

We justify (35) with use of theorem 1. At first, we rename variables of the
process (34), i.e. instead of (34) we shall consider the process

����
�
�
�
�

���� ����a1 a2 a3
-

�

In ?u

v := u
Out ! (v2)

-
�

v := u
In ?u

Out ! (v2)

(36)

To prove (33) ≈ (36) with use of theorem 1 we define the formulas bAi,aj
(where i, j = 1, 2, 3) as follows:

216 Andrew M. Mironov

– bAi,aj
def
= ⊥, if i 6= j

– bA1,a1
def
= >

– bA2,a2
def
= (x = y = z = u)

– bA3,a3
def
= (x = y = v) ∧ (z = u).

10 An example: verification of a sliding window protocol

In this section we present an example of use of theorem 1 for a verification of a
sliding window protocol.

A sliding window protocol ensures a transmission of messages from one agent
to another through a medium, in which messages may get distorted or lost. In
this section we consider a two-way sliding window protocol, in which the agents
can both send and receive messages from each other. We do not present here a
detail explanation of this protocol, a reader can find it in section 3.4.2 of the
book [10] (a protocol using go back n).

10.1 A structure of the protocol

The protocol is a system consisting of interacting components, including

– components that perform a formation, sending, receiving and processing of
messages (such components are called agents, and messages sent from one
agent to another, are called frames), and

– a medium, through which frames are forwarded (such a medium is called a
channel).

A detailed description of the components and relation between them is repre-
sented in the Appendix.

10.2 Frames

Each frame f , which is sent by any of the agents, contains a packet x, and a
couple of numbers:

– a number s ∈ Zn
def
= {0, 1, . . . , n − 1} (where n is a fixed integer), which is

associated with the packet x and with the frame f , and
– a number r ∈ Zn, which is a number associated with a last received undis-

torted frame.

To build a frame, a function ϕ is used, i.e. a frame has the form ϕ(x, s, r).
To extract the components x, s, r from the frame ϕ(x, s, r), the functions

info, seq and ack are used, these functions have the following properties:

info(ϕ(x, s, r)) = x, seq(ϕ(x, s, r)) = s, ack(ϕ(x, s, r)) = r

A Method of a Proof of Observational Equivalence of Processes 217

10.3 Window

The set of variables of an agent contains an array x[n]. Values of some compo-
nents of this array are packets which are sent, but not yet acknowledged. A set
of components of the array x, which contain such packets at a current time, is
called a window.

Three variables of the agent are related to the window: b (a lower bound of
the window), s (an upper bound of the window), and w (a number of packets
in the window). Values of these variables belong to the set Zn. At the initial
moment values of b, s and w are equal to 0. At any moment the window can be
empty (if b = s), or not empty (if b 6= s). In the last case the window consists of
elements of x with indices from the set [b, s[, where [b, s[denotes the set

– {b, b+ 1, . . . , s− 1}, if b < s, and
– {b, b+ 1, . . . , n} ∪ {0, 1, . . . , s− 1}, if s < b.

Adding a new packet to the window is performed by an execution of the
following actions: this packet is written in the component x[s], s is increased
by 1 modulo n (i.e. a new value of s is assumed to be s + 1, if s < n − 1, and
0, if s = n − 1), and w is increased by 1. Removing a packet from the window
is performed by an execution of the following operations: b is increased by 1
modulo n, and w is decreased by 1 (i.e. it is removed a packet whose number is
equal to the lower bound of the window).

If an agent received a frame, the third component r of which (i.e. a number
of an acknowledgment) is such that r ∈ [b, s[, then all packets in the window
with numbers from [b, r[are considered as acknowledged and are removed from
the window (even if their acknowledgments were not received).

10.4 Flow graph

A relation between subprocesses of sliding window protocol is represented by the
flow graph:

e uu eu ee u

e u e u

e u
u e
?

6start1 timeout1 e u
u e
?

6start2 timeout2

C1

C1

C2

C2

'

&

$

%
Channel

'

&

$

%
Agent1

�
�
�
�Timer1

�
�
�
�Timer2

'

&

$

%
Agent2

-

�

-

�

In1 Out1 In2 Out2

218 Andrew M. Mironov

10.5 Timers

Each component x[i] of the array x is associated with a timer, which determines
a duration of waiting of an acknowledgement from another agent of a receiving of
the packet contained in the component x[i]. The combination of these timers is
considered as a process Timer, which has an array t[n] of boolean variables. The
process Timer has one state and transitions which are labeled by the following
operators:

– [start?i, t [i] := 1]
– [stop?i, t [i] := 0]
– (t [j] = 1)[timeout ! j, t [j] := 0] (where j = 0, . . . , n− 1)

An initial condition is t = (0, . . . , 0).
If an agent has received an object with a name timeout from a timer, then

the agent sends again all packets from its window.

10.6 Agents

A behavior of each agent is described by the same process, combining functions
of a sender and a receiver. This behavior can be represented by the following
flowchart.'
&

$
%

start

enable = 1

w, b, s, r = 0

timeout?i
s := b
i := 1

�� ��enable = 1

In?x[s]
send
w := w + 1

send
i := i+ 1
�� ��i ≤ w

����
Out ! info(f)
r := r+

n
1

w := w − 1
stop ! b
b := b+

n
1

�
�

�
�ack(f) ∈ [b, s[

�� ��seq(f) = r

�� ��f = ∗C?f

enable := (w < n− 1)-

?

?

?

?

��

� - -

6

??

?

?

�

-

�

-

-

�

+

−

−

−−

+

+
+

+

where

– send is an abbreviation of the list of AOs





C !ϕ(x[s], s, r−
n

1)

start ! s
s := s+

n
1





A Method of a Proof of Observational Equivalence of Processes 219

– ∗ is a special notation for a distorted message, and

– a value of the variable enable is 1, if the agent can receive a new packet from
his network level (i.e. w < n− 1), and 0, otherwise.

Processes Agent1 and Agent2 are obtained by a simple transformation of this
flowchart, and by an addition of corresponded index (1 or 2) to its variables and
names.

10.7 Specification

External actions of the above protocol (i.e. actions which are related to its com-
munication with a network level) have the form In1?d, In2?d,Out1!d andOut2!d.
Assume that we take into account only external actions In1?d and Out2!d, and
ignore other its external actions (i.e. we consider a transmission only in one di-
rection: from the left to the right). We would like to prove that such behavior
is equivalent to a behavior of a process Bn−1, which is called “a FIFO buffer
which can hold at most n− 1 frames”, and is defined as follows:

– variables of Bn−1 are

• an array (x[0], . . . , x[n− 1]), elements of which have the same type as a
type of frames in the above protocol, and

• variables r, s, u, values of which belong to Zn, and have the following
meaning: at every moment

∗ a value of u is equal to a number of frames in the buffer
∗ values r and s can be interpreted as lower and upper bounds of a

part of the array x, which stores the received frames, which has not
yet been issued from the buffer

– Bn−1 has one state and 2 transitions with labels

(u < n− 1) [In?x[s], s := s+
n

1, u := u+ 1]

(u > 0) [Out !x[r], r := r+
n

1, u := u− 1]

where ∀ i ∈ {0, n− 2} i+
n

1
def
= i+1 and (n− 1) +

n
1

def
= 0

– initial condition is r = s = u = 0.

10.8 A process corresponded to the protocol

A process that describes a behavior of the protocol with respect to the above
specific point of view (where we ignore actions of the form In2?d and Out1!d) is
constructed as a parallel composition of the processes corresponded to compo-
nents of this procotol, with elimination of atomic operators related to ignored
communications.

220 Andrew M. Mironov

10.9 Verification

With use of the simplification operations from section 9, we can transform the
process corresponded to the protocol (with elimination of atomic operators which
are corresponded to ignored actions) to a process P with only one state and with
transitions labelled by the following operators:

– (w < n− 1) [In?x[s], M1 := M1 · ϕ(x[s], s, . . .), s := s+
n

1, w := w + 1]

– (M1 6= ε) ∧ (seq(M̂1) = r) [Out ! info(M̂1), r := r+
n

1, M1 := M ′1]

– (M2 6= ε) ∧ (ack(M̂2) ∈ [b, s[) [b := ack(M̂2) +
n

1, w := s−
n
b, M2 := M ′2],

where ∀ i, j ∈ {0, n − 1} i−
n
j

def
= i−j, if i−j ∈ {0, n − 1}, and n + i−j,

otherwise
– [M1 := M1 · ϕ(x[b], b, . . .), . . . ,M1 := M1 · ϕ(x[s−

n
1], s−

n
1, . . .)]

– (M1 6= ε) [M1 := M ′1]
– (M2 6= ε) [M2 := M ′2]
– [M2 := M2 · ϕ(. . . , . . . , r−

n
1)]

where
dots denote unessential components of expressions, and the symbols Mi, M̂i,

M ′i , · and ε have the following sense:

– M1 and M2 are variables of the process Channel, and values of these vari-
ables are lists of frames which were received by the process Channel (Mi

holds frames received from Agenti), every received frame is added to the end
of a corresponded list

– M̂i (i = 1, 2) is an expression, a value of which is equal to the first element
of the list Mi

– M ′i (i = 1, 2) is an expression, a value of which is equal to the list Mi without
its first element

– · is a function of an addition of a frame to the end of a list
– ε is a constant, a value of which is an empty list.

For a proof that the process P is observationally equivalent to the process
Bn−1, we define a formula bs1s2 where s1 is a unique state of P and s2 is a unique
state of Bn−1 as a conjunction of the following formulas:

– (M1 6= ε) ∧ (seq(M̂) = r) ⇒ u > 0
– ∀ f ∈M1 info(f) = x[seq(f)]
– ∀ f ∈M2 ack(f) ∈ [b−

n
1, r[

– [r, s[⊆ [b, s[
– w = s−

n
b ≤ n− 1

– u = s−
n
r ≤ w

– if a value of M2 is f1 · . . . · fk, then the sequence ack(f1) . . . ack(fk) is
monotonically increasing (mod n) subsequence of [b−

n
1, r[

A Method of a Proof of Observational Equivalence of Processes 221

(the last record is not a formula, but can be represented by a formula, we omit
this representation).

It is not so diffcult to check that bs1s2 satisfies the conditions of theorem 1
and this proves that the process P is observationally equivalent to Bn−1.

11 Conclusion

The concept of a process with message passing which is presented in this paper
can be considered as a formal model of a communicating program without re-
cursion. In the paper we have established suffcient conditions of observational
equivalence of processes. The next steps of investigations in this area can be the
following.

– Find necessary and suffcient conditions of observational equivalence of pro-
cesses with message passing.

– Generalize the proposed concept of a process with message passing for formal
modeling of communicating programs with recursion, and find necessary and
suffcient conditions of observational equivalence of such processes.

References

1. R. Milner: A Calculus of Communicating Systems. Number 92 in Lecture Notes in
Computer Science. Springer Verlag (1980)

2. R. Milner: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

3. C.A.R. Hoare: Communicating Sequential Processes. Prentice Hall (1985)
4. Clarke, E.M., Grumberg, O., and Peled, D.: Model Checking, MIT Press (1999)
5. C.A. Petri: Introduction to general net theory. In W. Brauer, editor, Proc. Ad-

vanced Course on General Net Theory, Processes and Systems, number 84 in LNCS,
Springer Verlag (1980)

6. J.A. Bergstra, A. Ponse, and S.A. Smolka, editors: Handbook of Process Algebra.
North-Holland, Amsterdam (2001)

7. D. Brand, P. Zafiropulo: On Communicating Finite-State Machines. Journal of the
ACM, Volume 30 Issue 2, April 1983, pp. 323-342. ACM New York, NY, USA
(1983)

8. R.W. Floyd: Assigning meanings to programs. In J.T. Schwartz, editor, Proceed-
ings Symposium in Applied Mathematics, Mathematical Aspects of Computer Sci-
ence, pages 19-32. AMS (1967)

9. Badban, B. and Fokkink, W.J. and van de Pol, J.C.: Mechanical Verification of a
Two-Way Sliding Window Protocol (Full version including proofs). Internal Report
TR-CTIT-08-45, Centre for Telematics and Information Technology, University of
Twente, Enschede, June 2008. http://doc.utwente.nl/64845/ (2008)

10. A. Tanenbaum: Computer Networks. Fourth Edition. Prentice Hall (2002)
11. B. Hailpern: Verifying Concurrent Processes Using Temporal Logic. LNCS 129.

Springer-Verlag (1982)
12. G. Holzmann: Design and Validation of Computer Protocols. Prentice Hall (1991)
13. G. Holzmann: The model checker Spin. IEEE Transactions on Software Engineer-

ing, 23:279-295 (1997)

222 Andrew M. Mironov

14. R. Kaivola: Using compositional preorders in the verification of sliding window
protocol. In Proc. 9th Conference on Computer Aided Verification, LNCS 1254,
pages 48-59 (1997)

15. P. Godefroid and D. Long: Symbolic protocol verification with Queue BDDs. For-
mal Methods and System Design, 14(3):257-271 (1999)

16. K. Stahl, K. Baukus, Y. Lakhnech, and M. Steffen: Divide, abstract, and model-
check. In D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Proc. 6th SPIN
Workshop on Practical Aspects of Model Checking, Lecture Notes in Computer
Science 1680, pages 57-76. Springer-Verlag (1999)

17. T. Latvala: Model checking LTL properties of high-level Petri nets with fairness
constraints. In J. Colom and M. Koutny, editors, Proc. 21st Conference on Appli-
cation and Theory of Petri Nets, Lecture Notes in Computer Science 2075, pages
242-262. Springer-Verlag (2001)

18. D. Chkliaev, J. Hooman, and E. de Vink: Verification and improvement of the
sliding window protocol. In H. Garavel and J. Hatcliff, editors, Proc. 9th Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 2619, pages 113-127 (2003)

19. A. Schoone: Assertional Verification in Distributed Computing. PhD thesis,
Utrecht University (1991)

20. F. Vaandrager: Verification of two communication protocols by means of process
algebra. Technical Report Report CS-R8608, CWI (1986)

21. R. Groenveld: Verification of a sliding window protocol by means of process algebra.
Technical Report P8701, University of Amsterdam (1987)

22. J. van Wamel: A study of a one bit sliding window protocol in ACP. Technical
Report P9212, University of Amsterdam (1992)

23. M. Bezem and J. Groote: A correctness proof of a one bit sliding window protocol
in µCRL. The Computer Journal, 37(4):289-307 (1994)

Turchin’s Relation and Subsequence Relation on
Traces Generated by Prefix Grammars?

Antonina N. Nepeivoda

Program System Institute of RAS
Pereslavl–Zalessky

Abstract. Turchin’s relation was introduced in 1988 by V. F. Turchin
for loop approximation in supercompilation. The paper studies properties
of an analogue of the Turchin relation and properties of the subsequence
embedding on a restricted set of traces generated by prefix grammars or
by a product of prefix grammars.

Keywords: Higman’s lemma, prefix rewriting, well binary relation, com-
putational complexity, termination, supercompilation

1 Introduction

In computer science the homeomorphic embedding is investigated from two com-
pletely different points of view, for it is of both theoretical and practical interest.

On the one hand, the embedding showed itself to be useful as a branch
termination criterion in constructing tools for program transformation ([14], [3]).
What makes the homeomorphic embedding reasonable as a termination criterion
is the non-existence of an infinite sequence of finite labeled trees such that no tree
in the sequence is embedded into some its derivative (the fact was proved by
Kruskal and is called Kruskal’s theorem; for an elegant proof of the fact see [8]).
Relations with this property are called well-binary relations.

Definition 1. R,R ⊂ S×S, is called a well binary relation, if every sequence
{Φn} of elements from S such that ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is finite. If R is
well binary and transitive it is called a well quasiorder (wqo).

A sequence {Φn} with the property ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is called
a bad sequence with respect to R. Thus, well-binariness of R can be formulated
equivalently as “all bad sequences with respect to R are finite”.

On the other hand, well-binariness of the homeomorphic embedding is shown
to be non-provable in the Peano arithmetic with the first-order induction scheme
[13], and this fact aroused interest of logicians and computer scientists with back-
ground in mathematical logic (a thorough study of the proof-theoretical strength
of the fact is in [17]). Studies of the homeomorphic embedding as a termination

? The reported study was partially supported by Russian Foundation for Basic Re-
search project No. 14-07-00133-a.

224 Antonina N. Nepeivoda

criterion for term rewriting systems ([12,15]) are located in the middle between
these poles of pure theory and practice.

The problem is that since these two domains live their own separate lives,
it is not always obvious how to use the theoretical investigations in the practi-
cal program transformations. Theoricists study properties of the homeomorphic
embedding (and similar relations) on arbitrary (maybe not even computable) se-
quences of trees, and that can imply somewhat obscure view on practical features
of the relations: in particular it was established that the upper bound on a bad
sequence length with respect to the homeomorphic embedding dominates every
multiple recursive function [13], which looks redundantly from the practical point
of view. But in real applications the opposite problem becomes much more fre-
quent: the homeomorphic embedding yields branch termination too early [7,12].
In some algorithms of program analysis this flaw was partially fixed either by
making an additional annotation [6] or by intersecting the embedding with other
wqos [1].

In this paper we study properties of a special case of the homeomorphic
embedding on a restricted set of computable sequences.

Definition 2. Having two words Φ, Ψ in an alphabet Υ let us say that Φ is
embedded in Ψ with respect to the subsequence relation (Φ E Ψ) (E is also
called the scattered subword relation) if Φ is a subsequence of Ψ .

The subsequence relation is proved to be a well quasiorder by G. Higman [4].
We prove that while applied only to sequences generated by prefix grammars
the relation admits bad sequences not more than exponential over a grammar
size. If we apply the relation to a direct product of sequences generated by prefix
grammars we receive the multiple recursive upper bound found by H. Touzet [15].
Also we show how to make a refinement of the subsequence relation that solves
the empty word problem for languages generated by alphabetic prefix grammars
and inherits some useful features of Turchin’s relation, which was also used in
program transformation (in particular, in the supercompiler SCP4 [9]).

The paper is organized as follows. First, we introduce notion of a prefix
grammar. Then we give a definition of the Turchin relation and shortly prove its
well-binariness. After that we show how to build maximal bad sequences with
respect to the Turchin relation and give some discussion on using this relation
combined with other well binary relations. Finally, we show how our refinement
for the Turchin relation allows to refine the subsequence relation and, using our
knowledge about the Turchin relation, we investigate properties of the subse-
quence relation on traces generated by prefix grammars.

The main contributions of the paper are the following:

1. We outline the concept of Turchin’s relation in terms of prefix grammars
and investigate properties of the relation.

2. We link Turchin’s relation with the subsequence relation and show how
to model the former by the latter not using a notion of time for sequences
generated by prefix grammars.

Turchin’s Relation on Traces Generated by Prefix Grammars 225

3. We determine upper bounds of bad sequence length with respect to both
relations for sequences generated by a single prefix grammar and for direct
products of two sequences generated by prefix grammars.

4. We show that a minimal natural well binary generalization of Turchin’s
relation on direct products of sequences generated by prefix grammar is
the subsequence relation.

2 Prefix Grammars

We consider a restricted class of generative indeterministic grammars, in which
rewriting rules are applied in an arbitrary order.

Definition 3. A tuple 〈Υ,R, Γ0〉, where Υ is an alphabet, Γ0 ∈ Υ+ is an initial
word, and R ⊂ Υ+ × Υ ∗ is a finite set of rewrite rules1, is called a prefix
grammar if R : Rl → Rr can be applied only to words of the form RlΦ (where
Rl is a prefix and Φ is a (possibly empty) suffix) and generates only words of the
form RrΦ.

If the left-hand side Rl of a rule R : Rl → Rr has the length 1 (only the
first letter is rewritten) then the prefix grammar is called an alphabetic prefix
grammar.

A trace of a prefix grammar G = 〈Υ,R, Γ0〉 is a word sequence {Φi} (finite
or infinite) where Φ1 = Γ0 and for all i ∃R(R : Rl → Rr & R ∈ R & Φi =
RlΘ & Φi+1 = RrΘ) (Θ is a suffix). In other words, the elements of a trace are
derived from their predecessors by applications of rewrite rules from G.

Example 1 Consider the following prefix grammar GΛ with Υ = {a, b, c} and
the following rewrite rules:

R[1] : Λ→ ba R[2] : b→ Λ R[3] : aac→ Λ
R[4] : aad→ Λ

We cannot apply the rule R[3] to baacb, for baacb starts not by aac. If we apply
R[1] or R[2] to baacb the only correct results of the applications are babaacb
and aacb respectively.

When V. F. Turchin discussed a search of semantic loops in Refal programs he
considered a stack model, which resembles a prefix grammar [16]. V. F. Turchin
proposed to observe call stack configurations to prevent infinite unfolding of
a special sort. He aimed at cutting off branches where a stack top derives a path
that ends with the same stack top. If we denote the stack top as Φ, the derivation
of Φ with Φ on the top as ΦΨ , and the part of the initial stack that is not modified
asΘ then we can say that a branch is dangerous with respect to Turchin’s relation
if it contains pairs of the form ΦΘ, ΦΨΘ. We can notice that the terms form a pair
with respect to the subsequence relation, but V. F. Turchin proposed a stronger

1 It is usually said that Υ is finite, but this restriction is unnecessary in our case. Only
finiteness of R matters in our study.

226 Antonina N. Nepeivoda

relation for more precise identification of such stack configurations in his work
[16]. V. F. Turchin used this relation to construct better loop approximations
in residual programs, but the relation can be also used to forbid a program
transformation process to halt driving on finite computation branches. The last
property is analyzed in this paper for prefix-grammar-generated traces.

3 Turchin’s Relation

To describe the Turchin relation for grammar-generated traces we use a formal-
ization presented in [9]. The formalization introduces a notion of time indices.
The main idea of the formalization is to mark every letter in the trace by a natu-
ral number that points to the position in the trace where the letter first appears.
The order of words in a trace is from up to down.

The length of Φ is denoted by |Φ|.

Definition 4. Consider a trace {Φi} generated by a prefix grammar G, G =
〈Υ,R, Γ0〉. Supply letters of Φi by numbers that correspond to their time in-
dices as follows. The i-th letter of Γ0 is marked by the number |Γ0| − i; if the
maximal time index in the trace {Φi}ki=1 is M and Φk+1 is derived from Φk by
an application of R : Rl → Rr then the i-th letter Φk+1 (i ≤ |Rr|) is marked
by M + |Rr| − i+ 1. Time indices of the other letters of Φk+1 coincide with the
corresponding time indices of Φk.

We call such annotation time indexing and we call a trace with the annotation
a computation.

Example 2 Let us consider a grammar GLOG with Υ = {f, g, h} and the fol-
lowing rewrite rules:

R[1] : f → Λ R[3] : g → Λ R[5] : h→ Λ
R[2] : f → gf R[4] : g → h R[6] : h→ g

Γ0 = f . A first segment of a computation yielded by the grammar GLOG can
look as:

Γ0 : f(0)

R[2]

��

Γ2 : h(3)f(1)

R[6]

��

Γ4 : f(1)

Γ1 : g(2)f(1)

R[4] 44

Γ3 : g(4)f(1)

R[3]
55

The time indices are in subscripts, enclosed in brackets. Note that the letter f(0)
in Γ0 is replaced by f(1) in Γ1, and f(0) 6= f(1).

In the sequel Greek capitals (Γ , ∆, Θ, Ψ , Φ) denote words in a computa-
tion (with the time indexing). ∆[k] denotes the k-th letter of ∆ (counting from
the beginning).

Turchin’s Relation on Traces Generated by Prefix Grammars 227

An equivalence up to the time indices is formally defined as follows. Φ ≈ Ψ
if |Φ| = |Ψ | and ∀i(i ≥ 1 & i ≤ |Φ| ⇒ (Φ[i] = a(n) & Ψ [i] = b(m) ⇒ a = b)).
The definition has the following simple meaning: if we erase time indices of all
letters in Φ and Ψ then Φ and Ψ will coincide literally. For instance, in Example 2
f(0) 6= f(1), but f(0) ≈ f(1).

Now we are ready to define Turchin’s relation Γ � ∆. Loosely speaking, it
includes pairs 〈Γ,∆〉, where Γ can be presented as [Top][Context], ∆ can be
presented as [Top][Middle][Context], and the suffix [Context] is not modi-
fied in the computation segment thar starts from Γ and ends with ∆.

Definition 5. Γ � ∆ ⇔ Γ = ΦΘ0 & ∆ = Φ′ΨΘ0 & Φ′ ≈ Φ. Pairs Γ , ∆ such
that Γ � ∆ are called Turchin pairs2.

� is not transitive but it is reflexive and antisymmetric up to ≈ [11]. Well-
binariness of the relation can be proved using the following observation. If a rule
R has a non-empty right-hand side Rr, Φ ≈ Rr, Φ

′ ≈ Rr, ΦΘ0 precedes Φ′Θ1,
and ∃i(Θ1[i] = Θ0[1]) then ΦΘ0 � Φ′Θ1. So the maximal word length in a bad
sequence with respect to � is bounded by

|Γ0|+
∑

(|R[i]
r | − 1)

where Γ0 is the initial word and
∑

(|R[i]
r | − 1) runs over the set of different

right-hand sides of all rules.
The upper bound is not exact due to the following two limitations. First,

not every letter can be rewritten to the chosen right-hand side, i.e. the letter f
cannot be rewritten to h in a one step. Second, some rules can accidentally share
some letters in their right-hand sides. I.e. the letter g in the right-hand side of
the rule f → gf and the letter g in the right-hand side of the rule h → g have
different nature and the coincidence of the two letters is occasional. In the next
section we show how to partly avoid this difficulty.

4 Annotated Prefix Grammars

If in the rules h → g and f → gf we write down the corresponding letters as
e.g. g[f] and g[h] and say that g[f] 6≈ g[h] then the prefix grammar will generate
computations with less number of occasional Turchin’s pairs.

Let us give more formal definition of this sort of prefix grammars.

Definition 6. A prefix grammar G=〈Υ,R, Γ0〉, R ⊂ Υ+ × Υ ∗ is called anno-
tated3 if

2 In [9] it is also specified that |Φ| > 0. If a computation is yielded by a grammar only
with non-empty left-hand sides of rules then this limitation is unnecessary. Otherwise
the condition |Φ| > 0 becomes essential to make the upper bound C′

Max constructed
with a help of Lemma 1 exact.

3 This grammar property 2 plays a role only in the construction of a longest bad
sequences. So in most propositions grammars with only the properties 1 and 3 are
also considered as annotated.

228 Antonina N. Nepeivoda

1. For every two rules R : Rl → Rr, R
′ : R′l → R′r, if ∃i, j(Rr[i] ≈ R′r[j]), then

Rr ≈ R′r;
2. If Rl → Rr ∈ R and there is a rule R′l → R′r in R then R′l → Rr ∈ R.

3. The initial word contains only unique letters: ∀i, j, k(R
[k]
r [i] 6= Γ0[j]).

Consider the following algorithm that transforms a prefix grammar G to
an annotated G′.

1. Let a = R
[n]
r [i], a ∈ Υ , n be an unique number of the rule with the right-

hand side R
[n]
r . a corresponds to the pair 〈a, 2n ∗ 3i−1〉. We set n = 0

for the initial word Γ0 and denote the corresponding tuple of the pairs
〈Γ0[1], 1〉〈Γ0[2], 3〉 . . . 〈Γ0[|Γ0|], 3|Γ0|〉 as Γ ′0.

2. A rewrite rule R′ : R′l → Φ of the grammar G′ corresponds the the equiva-
lence class up to left-hand sides of rules 〈ai, ni〉 → Φ, where Φ is a right-hand
side of a rule from G after the first step, and 〈ai, ni〉 is arbitrary.

If the initial grammar G yields a bad sequence then the computation by
G′ that is derived from Γ ′0 by application of the rules from the equivalence
classes that correspond to the right-hand sides of the rules that are applied in
the computation by G is also a bad sequence.

We do not differ rewrite rules with the different left-hand sides in annotated
grammars and write them as x→ Rr where x denotes an arbitrary pair sequence
of a bounded length.

Example 3 Let us transform the prefix grammar GLOG from Example 2 into
an annotated.

G′LOG:
Γ0 = 〈f, 1〉 R[2] : x→ 〈g, 4〉
R[1] : x→ 〈g, 2〉〈f, 6〉 R[3] : x→ 〈h, 8〉
R[4] : x→ Λ

The computation by GLOG that corresponds to the computation from Example 2
now begins as follows:

Γ0 : 〈f ,1〉(0)
R[1]

��

Γ2 : 〈h,8〉(3)〈f ,6〉(1)
R[2]

��
Γ1 : 〈g,2〉(2)〈f ,6〉(1)

R[3] 33

Γ3 : 〈g,4〉(4)〈f ,6〉(1)

Note that now Γ1 6� Γ3.

A useful feature of annotated grammars is their ability to generate longest
bad sequences. There are no intersections in the right-hand sides of rewrite rules
and thus ≈ discerns prefixes that are yielded by distinct rule applications. 4

4 This can be very useful if there is a rule R with the left-hand side Rl embedded
in the right-hand side Rr. Note that if Rl E Rr then the subsequence termination
criterion is always activated after an application of the rule Rl → Rr. This problem
was pointed in [12].

Turchin’s Relation on Traces Generated by Prefix Grammars 229

Now we can find the upper bound of a bad sequence length in a computation
yielded by a prefix grammar. The proof uses the following lemma.

Lemma 1 Every computation by an annotated prefix grammar ends either by
Λ or by a Turchin pair ΦΘ0, Φ′ΨΘ0 such that there exists a rule Rl → Rr, for
which Φ ≈ Rr, Φ′ ≈ Rr, and Rr 6= Λ.

For the proof see Appendix. Note that the proof is for not only alphabetic
prefix grammars but for prefix grammars that allow rules of the form Φ → Ψ .
With the help of Lemma 1 we proved that the exact upper bound of a bad
sequence length for an annotated prefix grammar is

C ′Max = |Γ0| ∗ (1 + |R[0]
r | ∗ (1 + |R[1]

r | ∗ (· · · ∗ (1 + |R[N]
r |) . . .)))

where rules in the sequence R[0], R[1], . . . , R[N] are placed by a non-increasing

order with respect to the length of their right-hand sides |R[i]
r | (the proof of this

fact is by induction; for details see [11]).

Note that N in the formula |Γ0|∗(1+|R[0]
r |∗(1+|R[1]

r |∗(· · ·∗(1+|R[N]
r |) . . .)))

denotes not the cardinality of the set of rewrite rules but the cardinality of the set
of the right-hand sides of rewrite rules. Thus when we do the annotation there
is no exponential growth of the upper bound.

Example 4 Let us estimate the length of a longest bad sequence yielded by

the grammar G′LOG (Example 3). The length of the initial word is 1, |R[1]
r | has

the length 2, and two rules have the right-hand sides of the length 1. The corre-
sponding bad sequence length is 7.

Now let us build such bad sequence explicitly. For the sake of readability
different pairs of the form 〈 letter, number〉 are denoted by different letters (thus
〈f, 1〉 = a, 〈g, 2〉 = c, 〈f, 6〉 = c, 〈g, 4〉 = d, and 〈h, 8〉 = e).

G′LOG:
Γ0 = a R[2] : x→ d
R[1] : x→ bc R[3] : x→ e
R[4] : x→ Λ

One of the maximal bad sequences is:

Γ1 : b(2)c(1)

R[2]

��

Γ3 : e(4)c(1)

R[4]

��

Γ5 : d(5)

R[3]

��
Γ0 : a(0)

R[1]

77

Γ2 : d(3)c(1)
R[3]

66

Γ4 : c(1)
R[2]

77

Γ6 : e(6)

Note that the segment Γ5–Γ6 cannot be generated by the initial grammar GLOG.

If we aim to find embeddings not only in traces generated by single prefix
grammars but also in direct products of the traces then usage of � causes some

230 Antonina N. Nepeivoda

questions. Namely we must know whether well-binariness is preserved on inter-
sections of the Turchin relation with some wqo. The problem is that the Turchin
relation is not well binary on arbitrary computations’ subsequences — we only
can prove that it is well binary on the whole computations.

Example 5 Consider the following computation yielded by a prefix grammar.
Γ0 : a(2)b(1)c(0) Γ7 : b(5)c(3)
Γ1 : b(1)c(0) Γ8 : c(3)
Γ2 : c(0) Γ9 : b(10)c(9)
Γ3 : b(4)c(3) Γ10 : a(12)b(11)c(9)
Γ4 : a(6)b(5)c(3) Γ11 : a(14)a(13)b(11)c(9)
Γ5 : a(8)a(7)b(5)c(3) Γ12 : a(16)a(15)a(13)b(11)c(9)
Γ6 : a(7)b(5)c(3)

No two elements of the sequence Γ0, Γ5, Γ12, Γ21, . . . form a Turchin pair.

The following lemma verifies well-binariness of the intersections (the proof is
in Appendix).

Lemma 2 � contains a wqo T that is well binary on all computations yielded
by an annotated prefix grammar.

T contains Turchin pairs of a special sort. Namely it contains 〈Γ,∆〉 such that
Γ = ΦΘ0, ∆ = Φ′ΨΘ0, there exists a rule R : Rl → Rr with |Rr| > 0, Rr ≈ Φ,
Rr ≈ Φ′, and Ψ [1] is never modified in the further computation. So the Turchin
relation may not be checked after erasures with no loss of well-binariness.

What is more, existence of T guarantees that the Turchin relation can be
intersected with an arbitrary wqo without loss of well-binariness. On the other
hand, the idea of intersecting two Turchin relations looks appealing but implies
a possible existence of infinite bad sequences with respect to the intersection.

Definition 7. Let us say that Γ is embedded in ∆ with not more than with
a single gap if there exist words Φ, Ψ , Θ (maybe empty) such that Γ = ΦΘ,
∆ = ΦΨΘ.

Let us say that Γ is embedded in ∆ with not more than with n+ 1 gaps
if there exist (maybe empty) Φ, Ψ , Θ1, Θ2 such that Γ = ΦΘ1, ∆ = ΦΨΘ2 and
Θ1 is embedded in Θ2 with not more than with n gaps.

Let us give a simple example. abac is embedded in abrac with not more
than a single gap and in abracadabra — with not more than two gaps (abac is
divided into only two parts ab and ac, but the end of a word is also considered
as its part. The end of the word abracadabra is not at the same position as
the end of ac, so the gap between ac and the end of the word is also taken into
account).

Lemma 3 If a relation R of word embedding allows only finite number of gaps
then it is not well binary on sequences that are yielded by a direct product of
prefix grammars G1 ×G2, even when the grammars are deterministic.

Turchin’s Relation on Traces Generated by Prefix Grammars 231

For the proof see Appendix. So the Turchin relation can be intersected with
any relation that is well binary on the whole {Υ ∗}, but not with the other Turchin
relation.

5 Turchin’s Relation and Subsequence Relation

The Turchin theorem not only guarantees existence of a Turchin pair for ev-
ery infinite computation but also gives the exponential upper bound of a bad
sequence length. In the case of computations yielded by annotated prefix gram-
mars the upper bound of a bad sequence with respect to the subsequence relation

coincides with the upper bound of a bad sequence C ′Max = |Γ0| ∗ (1+ |R[0]
r | ∗ (1+

|R[1]
r | ∗ (· · · ∗ (1 + |R[N]

r |) . . .))) for the Turchin relation. What is more, in a com-
putation yielded by an annotated prefix grammar the lengths of bad sequences
with respect to these two relations always coincide.

Lemma 4 The first pair in a computation yielded by an annotated prefix gram-
mar that satisfy the subsequence relation is a Turchin pair.

For the proof see Appendix.
Lemma 4 may have some practical meaning for systems of program transfor-

mation that use the homeomorphic embedding as a branch termination criterion.

Example 6 The left-hand side of the definition f(S(x))=S(f(g(S(x)))) is em-
bedded in the right-hand side in the sense of the subsequence relation. So an un-
folding of the call f(S(Z)) yields termination if the homeomorphic embedding is
used as a termination criterion. If we use the intersection of this relation with
the Turchin relation, the call does not cause the early termination5. The other
way to prevent this too early termination is to use the annotated subsequence
relation: it is only enough to annotate function calls to avoid unwanted embed-
dings with the effect similar to the usage of the Turchin relation intersected with
E.

Then the question emerges if the annotated subsequence relation can pre-
vent too early terminations for every prefix-grammar-generated computation.
Namely, whether the annotated subsequence relation allows unfolding to find
a trace ending by Λ if Λ is in the language of the prefix grammar. The answer
is yes for alphabetic prefix grammars [10] and is negative in the general case
when R ⊂ Υ ∗ × Υ ∗. To illustrate the last claim, consider the grammar GΛ of
Example 1 if Γ0 = cd. Λ belongs to the language of the grammar since

Γ1 : bacd

R[2]

��

Γ3 : baacd

R[2]

��

Γ5 : d

R[1]

��

Γ7 : ad

R[1]

��

Γ9 : aad

R[4]

��
Γ0 : cd

R[1]

77

Γ2 : acd
R[1]

66

Γ4 : aacd
R[3]

77

Γ6 : bad
R[2]

77

Γ8 : baad
R[2]

77

Γ10 : Λ

5 A termination criterion of this type is used in the supercompiler SCP4 [9].

232 Antonina N. Nepeivoda

The grammar belongs to the class of annotated grammars. But there are
several pairs with respect to E (and �) on the trace leading to Λ: e. g. Γ1 � Γ3.
To solve the empty word problem for languages generated by non-alphabetic
prefix grammars using the subsequence relation as a termination criterion we
need to do some more annotation, which is proved in [10].

Recall that in the case of pairs over E the upper bound on arbitrary sequences
with restricted word length growth is multiple recursive [15]. We show that
the upper bound is exact even if the sequences are built by a direct product of
two prefix grammars.

Example 7 Consider the following rewrite grammar (it not necessarily rewrites
only prefixes; the grammar is similar to the one described in [15]).

R[1] : su→ ss R[2] : tu→ tt R[3] : ts→ tt
R[4] : wu→ ws R[5] : tws→ utw R[6] : tw → ws
R[7] : sws→ wt R[8] : sw → wsss

If the rules are applied to the initial word sss . . . swww . . . w then the trace of
the length O(B(m,n)) with no pairs with respect to trianglelefteq is generated.

Now we build a system of two prefix grammars that models the example of
H. Touzet (x denotes an arbitrary letter).

1. The first letter of a word rewritten by the first prefix grammar G1 represents
a current state of the Turing machine.

2. The last letter of a word rewritten by the second prefix grammar G2 repre-
sents the end of data [EOW] and is always rewritten into itself.

3. The word rewritten by G1 represents the initial fragment of data which is
before the counter of Turing machine. The word rewritten by G2 represents
the final fragment of data which is behind the counter of Turing machine.

4. There is an auxiliary set of rules moving the counter to the beginning of
the data 〈State0x, y〉 → 〈State0, xy〉.

5. There is a rule that starts the rewrite process 〈State0, y〉 → 〈StateF1 , y〉.
6. R[i] : R

[i]
l → R

[i]
r are modeled by 〈StateFi x, [EOW]〉 → 〈StateBi x, [EOW]〉 (if

i 6= 8), a rule 〈StateFi R
[i]
l , x〉 → 〈State0Λ,R

[i]
r x〉 and a set of rewrite rules

〈StateFi x, y〉 → 〈StateFi xy, Λ〉 where x does not coincide with R
[i]
l .

7. The set of rules 〈StateBi x, y〉 → 〈StateBi , xy〉 is similar to the one for
State0 but the last rule now looks like 〈StateBi , y〉 → 〈StateFi+1, y〉 instead of
〈State0, y〉 → 〈StateF1 , y〉.

If there are two pairs 〈a1Φ, Ψ〉, 〈a2Φ′, Ψ ′〉 such that a1Φ E a2Φ
′ and Ψ E Ψ ′

then a1 = a2 and ΦΨ E Φ′Ψ ′. There can be no such pairs if a2 is not changed
on the trace fragment from 〈a1Φ, Ψ〉 to 〈a2Φ′, Ψ ′〉 because then |Ψ ′| < |Ψ |. If
a2 is changed on the trace fragment from 〈a1Φ, Ψ〉 to 〈a2Φ′, Ψ ′〉 then one of

the rules 〈StateFi R
[i]
l , x〉 → 〈State0Λ,R

[i]
r x〉 is applied on the fragment and thus

ΦΨ 6E Φ′Ψ ′. Therefore the bad sequence length on the trace generated by G1×G2

with respect to the subsequence relation must be also estimated by O(B(m,n)).

Turchin’s Relation on Traces Generated by Prefix Grammars 233

Now we can see that transition from only stack transformations to stack-
plus-data transformations even in the unary case lifts the computational model
from the finite automata up to full power of Turing machines. Thus it becomes
interesting to investigate how the popular wqos work on intermediate prefix
grammar constructions (as −2 or −1-class prefix grammars [5]), which are widely
used in term rewriting theory.

Acknowledgments. The author is grateful to A. P. Nemytykh for fruitful dis-
cussions and inspiration on investigating properties of the Turchin relation, and
to the anonymous referee for useful remarks that helped to remove vagueness
from the paper.

References

1. Albert, E., Gallagher, J., Gomez-Zamalla, M., Puebla, G.: Type-based Homeo-
morphic Embedding for Online Termination. In Journal of Information Processing
Letters, vol. 109(15) (2009), pp. 879–886.

2. Caucal, D.: On the Regular Structure of Prefix Rewriting. Theoretical Computer
Science, vol. 106 (1992), pp. 61–86.

3. Bolingbroke, M. C., P. Jones, S. L., Vytiniotis, D.: Termination Combinators For-
ever. In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Tokyo,
Japan, 2011, pp. 23–34.

4. Higman, G.: Ordering by Divisibility in Abstract Algebras. In Bulletin of London
Mathematical Society, vol. 3(2) (1952), pp. 326–336.

5. Jancar, P., Srba, J.: Undecidability Results for Bisimilarity on Prefix Rewrite Sys-
tems. In Foundations of Software Science and Computation Structures, LNCS, vol.
3921 (2006), pp.277–291.

6. Klyuchnikov, I.: Inferring and Proving Properties of Functional Programs by Means
of Supercompilation. PhD Thesis [In Russian], 2010.

7. Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic
Methods. In Lecture Notes in Computer Science, vol. 2566 (2002), pp. 379–403.

8. Nash-Williams, C. St. J. A.: On Well-uasi-ordering Infinite Trees. In Proceedings of
Cambridge Philosophical Society, vol. 61(1965), pp. 697–720.

9. Nemytykh, A. P.: The SCP4 supercompiler: general structure. Moscow, 2007. 152 p.
(in Russian)

10. Nepeivoda, A.: Ping-Pong Protocols as Prefix Grammars and Turchin’s Relation,
VPT 2013. In Proceedings of First International Workshop on Verification and
Program Transformation, EPiC Series, vol. 16, EasyChair, 2013, pp. 74–87.

11. Nepeivoda, A. N.: Turchin’s Relation and Loop Approximation in Program Anal-
ysis. In Proceedings on the Functional Language Refal. Pereslavl-Zalessky, 2014,
pp. 170–192. (in Russian)

12. Puel, L.: Using Unavoidable Set of Trees to Generalize Kruskal’s Theorem. In
Journal of Symbolic Computation, vol. 8 (1989), pp. 335–382.

13. Simpson, S: Nonprovability of Certain Combinatorial Properties of Finite Trees.
In Harvey Friedmans research on the foundations of mathematics, Elsevier Science
Publishers, 1985, pp. 87–117.

14. Sørensen, M. H., Glück, R.: An Algorithm of Generalization in Positive Supercom-
pilation. In Logic Programming: Proceedings of the 1995 International Symposium
(1995), pp. 465–479.

234 Antonina N. Nepeivoda

15. Touzet, H.: A Characterisation of Multiply Recursive Functions with Higman’s
Lemma. In Information and Computation, vol. 178 (2002), pp. 534–544.

16. Turchin, V. F.: The Algorithm of Generalization in the Supercompiler. In Partial
Evaluation and Mixed Computation (1988), pp. 341–353.

17. Weiermann, A.: Phase Transition Thresholds for Some Friedman-Style Indepen-
dence Results. In Mathematical Logic Quarterly, vol. 53(1) (2007), pp. 4–18.

Appendix

Proof (Lemma 1 on the first Turchin pair).
Let us consider a pair Φ1Θ0, Φ2ΨΘ0 such that Φ1Θ0 � Φ2ΨΘ0, (Φ1 ≈

Φ2), and the trace segment ending with Φ2ΨΘ0 is a bad sequence. Accord-
ing to the properties of annotated grammars, Φ1[1] and Φ2[1] must be gener-
ated by different applications of the same rule R : x → Rr with |Rr| > 0,
and if Φ1[1] ≈ Rr[i] then necessarily Φ2[1] ≈ Rr[i]. Let us denote the prefix

Rr[1]Rr[2]...Rr[i− 1] as R
(i−1)
(z) (z is the time index of Rr[i− 1]). Now turn back

to the two applications of R. The result of the former must be of the form

R
(i−1)
(k1)

Φ1Θ0, the result of the latter is of the form R
(i−1)
(k2)

Φ2ΨΘ0. They form

a Turchin pair and therefore coincide with Φ1Θ0 and Φ2ΨΘ0.
So Φ1 = Rr1Φ

′
1, Φ2 = Rr2Φ

′
2 (Φ′1 ≈ Φ′2, and Rr1 and Rr2 coincide up to

the time indices with some right-hand side of a rewrite rule). Let Φ′1 be non-
empty. Then ∃R′, j(Φ′1[1] ≈ R′r[j] & Φ′2[1] ≈ R′r[j]), and Φ′1[1] 6= Φ′2[1]. The prefix

R′r[1]R′r[2]...R′r[j − 1] is denoted as R
′(j−1)
(z) . Now turn back to the R′ applications

that generate Φ′1[1] and Φ′2[1]. They look as R
′(j−1)
(l1)

Φ′1Θ0 and R
′(j−1)
(l2)

Φ′2ΨΘ0 and

form a Turchin pair. This contradicts the choice of Φ1Θ0 and Φ2ΨΘ0.
Hence Φ1Θ0 = Rr1Θ0 and Φ2ΨΘ0 = Rr1ΨΘ0.

Proof (Existence of a wqo subset of Turchin’s relation).
Let 〈Υ,R, Γ0〉 be an annotated prefix grammar G. Consider all traces {Φi}∞i=1

generated by G such that ∃N ∀i ∃j(i < j & |Φj | ≤ N).
For every trace J from this set choose the least N that satisfies this property.

Due to finiteness of the set R words generated by the rules from R can contain
finite set of letters. Therefore some word Ψ of the length N must repeat itself
(with respect to ≈) infinitely in J . The first letter of Ψ is generated by a single
rule R with a non-empty right-hand side. Every two results of these applications
of R look as ∆Ψ and ∆′Ψ ′ where Ψ ≈ Ψ ′ and ∆ ≈ ∆′ for they are same prefixes
of the same right-hand side Rr that end at Ψ [1] so ∆Ψ and ∆′Ψ ′ form a Turchin
pair.

All other traces {Φi}∞i=1 have an infinite growth of the minimal word length:
∀N ∃iN ∀j(j > iN ⇒ |Φj | > N). For every such trace and every N choose
a minimal iN such that all successors of ΦiN never have the length less than N :
∀j(j < iN ⇒ ∃k(k ≥ j & |Φk| < N)). So |ΦiN−1| < N , |ΦiN | ≥ N , and ΦiN
is generated from its predecessor by some R with a non-empty right-hand side,
|Rr| ≥ 2: ΦiN = Rr(l)Φ

−
iN−1 where Φ−iN−1 is a suffix of ΦiN−1. Φ−iN−1 stays

constant because |ΦiN−1| < N . All the elements of {ΦiN }∞N=1 begin with a

Turchin’s Relation on Traces Generated by Prefix Grammars 235

non-empty right-hand side of a some rewrite rule, therefore exists an infinite
subsequence {ΦiK}∞K=1 of {ΦiN }∞N=1 such that all elements of {ΦiK}∞K=1 begin
with the right-hand side of a same rule. Every two elements of {ΦiK}∞K=1 form
a Turchin pair.

The set T of pairs of these two sorts is a wqo on traces generated by an an-
notated prefix grammar.

Example 8 (Non-well-binariness of N-gaps relation) Proof. Let us con-
sider a class of grammars G[n] on pairs of words in the alphabet
{a1, . . . , an, A1, . . . , An, e, E}×{a1, . . . an, A1, . . . , An, e, E}, with the initial word
〈e,A1A2 . . . AnE〉 and the following rewrite rules:

R[00] : 〈e, a1〉 → 〈E, a1a1〉
R[01] : 〈E,A1〉 → 〈e,A1A1〉
R[02] : 〈e,A1〉 → 〈a1e, Λ〉
R[03] : 〈E, a1〉 → 〈A1E,Λ〉
. . .
R[i0] : 〈ai, ai〉 → 〈Λ, aiai〉
R[i1] : 〈Ai, Ai〉 → 〈Λ,AiAi〉
R[i2] : 〈ai, Ai〉 → 〈aiai, Λ〉
R[i3] : 〈Ai, ai〉 → 〈AiAi, Λ〉
R[i4] : 〈ai, ai+1〉 → 〈Λ, aiai+1ai+1〉
R[i5] : 〈Ai, Ai+1〉 → 〈Λ,AiAi+1Ai+1〉
R[i6] : 〈ai, Ai+1〉 → 〈ai+1aiai, Λ〉
R[i7] : 〈Ai, ai+1〉 → 〈Ai+1AiAi, Λ〉
. . .
R[n0] : 〈an, e〉 → 〈Λ, ane〉
R[n1] : 〈An, E〉 → 〈Λ,AnE〉
R[n2] : 〈an, E〉 → 〈anan, e〉
R[n3] : 〈An, e〉 → 〈AnAn, E〉

For every N there exists some n such that G[n] yields a trace with no pair
〈Φ1, Ψ1〉, 〈Φ2, Ψ2〉 such that Φ1 is embedded in Φ2 and Ψ1 is embedded in Ψ2 with
not more than N gaps.

Proof (The proof of Lemma 4). Consider Φ1 and Φ2 such that Φ1 E Φ2, there are
no pairs with respect to the subsequence relation in the trace before Φ2, and Φ1 is
embedded into Φ2 with n+ 1 gaps (up to time indices). Let Θ0 be their common
suffix. Then Φ1 = A1A2 . . . AnΘ0 and Φ2 = B1A

′
1B2A

′
2 . . . BnA

′
nBn+1Θ0, where

Ai ≈ A′i for all i from 1 to n. Consider the words where letters An[1] and A′n[1]
are generated. The grammar features guarantee that both letters are generated
by a same rule R : x → Rr, so the words look as ∆AnΘ0 and ∆′A′nBn+1Θ0.
∆ ≈ ∆′ for they are same prefixes of the same right-hand side. This implies that
∆AnΘ0 E ∆′A′nBn+1Θ0. In the computation Φ1 and Φ2 are the first pair with
respect to the subsequence relation, consequently i = 1 = n, and Φ1 = A1Θ0,
and Φ2 = A′1Bn+1Θ0, so Φ1 � Φ2.

Algebraic Structures of Programs:
First Steps to Algebraic Programming

Nikolai N. Nepeivoda

Program System Institute of RAS
Pereslavl–Zalessky, Russia

Abstract. Basic algebraic notions are introduced which can be used to
describe and to transform program-data complexes for traditional lan-
guages, restricted computation, non-numeric computation and modeling.
General algebraic program systems (GAPS) are free of assumptions what
computing (programming) systems have as their particular constructs.

First of all we argue why current technique is sometimes not adequate.
Then we show how to interpret notions of abstract algebra (groupoid
structure) as super-von Neumann computational structure and how to
express many useful structures and notions in an algebra. Then GAPS
are introduced and basic mathematical results are stated including the
precise criterion when a given system of actions over programs can be
added to given programming language. Various examples of GAPS are
given. And at last we show possible primitives of ‘structured algebraic
modeling’ (programming).

Keywords: program algebras, reversive programs, near-reversivity, al-
gebraic computing

The general sructure of paper

Our introduction gives an informal insight why so abstract algebraic formalism
is reasonable for some problems of programming, what are its motivations and
main difference from other types of program algebras.

First of all we state basic analogies between program and computation struc-
tures and algebraic notions in groupoid (a structure with non-associative binary
operation). The main result here is that elements of groupoids can be viewed as
well as data, actions, actions over actions and so on. Thus we get a ‘functional’
programming on entities which are not necessary functions. The side results are
that many control and data structures can be expressed purely algebraically
without any reference to particular control structures.

Then we define GAPS (Generic algebraic program structure) — a very ab-
stract algebraic description of programs.

Basic properties of GAPS are studied and it is proved that many tradi-
tional languages can be represented as GAPS because they model the λ-calculus.
There are also example of dully non-traditional computing structures modeled by

Algebraic Structures of Programs 237

GAPS. Two precise criteria when a given language can be enriched or extended
by the given system of program transformations are stated.

And at last we define structures which allow to construct near-reversive com-
putations: reversive data types, mirrors, interruptors, crystals, wheels. An ex-
ample how to ‘program’ and to design a scheme by these structures is given.

1 Introduction

Reversible computing was the big bang inspiring this investigation. More pre-
cisely, it was a cognitive dissonance between brilliant ideas of von Neumann,
Landauer, Toffoli, Feynman, Merkle and more than 30 years of stagnation in “ap-
plied research”. Sorry, it is not a stagnation, but intensive running in a squirrel
cage wheel (maybe different for different ‘schools’). Usually such effect is induced
by some assumption which is so common that it becomes almost invisible. But
really it stands on the way, pollutes this way but nobody is brave enough to
point to this obstacle (a sacred cow, as it is called in [5]).

Here this cow is that computations are binary. Remember that mathematical
model of invertible functions is a group. Works (including mines) in this direction
were based on groups till 2012.

Bennett pointed out that reversivity can beat Landauer limit only if the
control system is also based on invertible transformations. By control system we
mean here a system of entities organizing the execution of elementary actions as
elements of a computing system. These ones can be the statements and structures
of programming language, the connectors in a physically realized scheme and so
on.

It is necessary to remember the difference between two notions. Reversive
computing, reversive actions are fully invertible. a−1 can be used both before and
after a, they are in some sense bijective. Reversible ones are retractable ones,
they are injective, this action can be undone but not prevented [8]. The store
for all intermediate results is a way to provide reversibility but not reversivity.
The multiplication of integers by 2 is reversible function but not reversive one.

There are important and fundamental invertible commands which cannot be
represented as functions and cannot be embedded into group structure. First of
all this is the absolute mirror or inversion of a program segment.

We use the list postfix notation for function or action application: (a F)
where F is an action applied to a.

Definition 1. Absolute mirror is the action transforming a preceding action
into its inversion: (f M) = f−1. UNDO is the action undoing the last block of
actions: {a1; . . . an} ;UNDO = EMPTY.

Example 1. M and UNDO are non-associative entities and almost never can be
embedded into structure of (semi)group:

((a ◦ b) ◦M) = (b−1 ◦ a−1) (a ◦ (b ◦M)) = (a ◦ b−1)

{a; b}; UNDO 6= a; b; UNDO.

238 Nikolai N. Nepeivoda

There is another aspect of a problem. Program and algorithmic algebras is a
classic branch of computer science. They take start at 60’ths. Glushkov [1] de-
fined algorithmic algebras using operators corresponding to base constructions
of structured programming, Maurer [2] introduced and studied abstract alge-
bras of computations (program generic algebras, PGA) more like to computer
commands, based on semigroups and on operators representing gotos. Various
kinds of algorithmic and dynamic algebras follow these two basic ideas.

For main results of Glushkov approach we refer to [3,4]. For current investi-
gations in PGA a good summary are [6,7]. There are more than hundred works
on algebras of programs cited in [11] where a comprehensive survey up to 1996
is done. Almost all these works are devoted to Turing complete systems. But
even reversible systems cannot be Turing complete [13,14].

Full reversivity restricts class of problems more severely. Factorial, multipli-
cation and division of integer numbers are irreversible. All arithmetic operations
on standard representation of real numbers are not reversive. If elementary ac-
tions are invertible a problem itself can be not invertible.

Example 2. Sorting is irreversive because we forget initial state and it cannot
be reconstructed from sorted array. Assembling of Rubik cube is irreversive due
to similar reasons.

Even if we go beyond the problem of heat pollution during computations
reversivity arises due to development of computer element base. Quantum com-
putations are reversive. Molecular computations are reversive. Superconductor
computations often are reversive. Nanocrystal computations are reversive. So
studying of computations where majority of operations are reversive is neces-
sary.

Concrete functions are often defined through common λ-notation. This does
not mean that all our constructs are based on λ-calculus.

2 Algebraic structures from the point of view of
programming

Definition 2. Signature σ is a list of symbols: functions (binary functions can
be used as infix operations), constants and predicates. There is a metaoperator
arity(s) giving for each function or predicate symbol its number of arguments.
If there is the predicate = it is interpreted as equality. s ∈ σ where sigma is a
signature means that symbol s is in σ.

Algebraic system S of signature σ is a model of this signature in the sense
of classical logic. We have a data type (or nonempty set) S called carrier and
second order function ζ such that for function symbols ζ(f) ∈ Sarity(f) → S,
ζ(f) ∈ Sarity(f) → {false, true} for predicates, ζ(c) ∈ S for constants.

Definition 3. Groupoid is an algebraic system of signature 〈~,=〉, where
arity(~) = 2. Its carrier is often denoted G, symbol for its binary operation
can be various for different groupoids. Element e is an identity (or neutral

Algebraic Structures of Programs 239

element) if ∀xx ~ e = e ~ x = x. Element 0 is zero if ∀xx ~ 0 = 0 ~ x = 0.
Left identity is such a that ∀x a~x = x. Left zero is such a that ∀xx~a = a.
Analogously for right identity and zero. Idempotent is such a that a ~ a = a.
Groupoid is a semigroup if its operation is associative. It is commutative if its
operation is commutative. It is injective if

∀x, y, f x~ f = y ~ f ⇒ x = y.

Semigroup is a monoid if it has an identity element. Monoid is a group if
there is identity element and for each x exists y such that f ~ g = g ~ f = e.
Bigroupoid is an algebraic system with two binary operations.

Morphism of algebraic structures is a map of their carriers preserving all
functions and constants, and truth (but not necessary falsity) for all predicates.
Isomorphism is a bijective morphism preserving falsity.

Now we comment this notions from informatic point of view.
Non-associative groupoid gives a set of expressions isomorphic to ordered

directed binary trees or Lisp lists.

Example 3. ((a~ (b~ c))~ (a~ d)) is an expression for Lisp ((a b c) a d) id ~
is CONS. It defines the binary tree on fig. 1.

~@
@

@@I

�
�
���

~@
@I

�
��

~@
@I

�
��

a ~@
@I

�
��

a d

b c

Fig. 1. ((a~ (b~ c))~ (a~ d)) as a tree

Abstract algebra is extremely valuable for program architects and analysts
because each isomorphism gives another representation for data, each morphism
gives a structure which can be viewed as approximation for full data or valuable
analogy.

If operation is commutative tree becomes inordered and direct analogies
with lists vanish. If it is associative list becomes linear and tree becomes a
one-dimensional array. Any associative operation can be interpreted as function
composition. It follows from classical theorem

Theorem 1. Each semigroup is isomorphic to semigroup of functions with com-
position as operation. [10]

240 Nikolai N. Nepeivoda

This theorem gives a full criterion when a space of actions can be viewed
as a space of functions: associativity. Thus Example 1 shows that actions not
always can be modeled as functions. Because a semigroup operation always can
be viewed as function composition it is usually denoted ◦.

The following example shows central role of semigroups in algebraic infor-
matics.

Example 4. Each collection of functions or relations closed under composition is
a semigroup. Thus we can treat functions definable by programs as the single
semigroup even our language is strongly typized. Programs are simply functions
undefined on data not belonging to types of their arguments. Each finite auto-
mate can be treated as a finite semigroup and vice versa any finite semigroup can
be viewed as a finite automate. Actions in each program language with sequen-
tial composition (usually denoted by semicolon) also form a syntactic semigroup
even their effect cannot be treat as a function.

The last sentence is the second keystone for very abstract notion of program
algebra independent from assumptions on concrete operators of language and of
functionality of actions.

One example of a commutative non-associative algebra of actions will be used
below and is sufficiently simple and expressive to show many peculiarities.

Example 5. A commutative groupoid formalizing a simple game. Its carrier is
the set of three elements {well, scissors, paper} (denoted {w,s,p}). Our operation
gives for each pair the winner.

w ~ s = w; w ~ p = p; s~ p = s; x~ x = x.

(w ~ s) ~ p = w ~ p = p, w ~ (s ~ p) = w ~ s = w. So simultaneous (or
independent) actions of two players effect in commutativity of the operation.

So commutativity of a semigroup means that our actions are functional and
independent. From the point of view of computations they can be executed in
various ways (sequentially in any order; (partially) parallel; and so on). From
the logical point of view our actions can be viewed as spending of a money-like
resource (Girard’s linear logic [9]). We take into account only a total amount of
resources in the ‘account’. Each operation spends them independently.

3 Groupoid as a computing structure

A groupoid can be viewed as a ‘functional’1 computing structure of ‘super-von-
Neumann’ kind. Each element a of groupoid can be viewed also as the action
with the effect λx. (x~ a). Furthermore it is actions on actions and so on. Data
and commands are the same.

So now we look on many interesting elements and properties from the point
of view of ‘algebraic computer’.

1 But remember that actions not always are functions!

Algebraic Structures of Programs 241

1. Associativity means that our actions are without ‘side effects’ and can be
viewed as functions.

2. Unity e means ‘do nothing’. Moreover each right unity ((x ~ e) = x is ‘no
operation’ command.

3. 0 is the fatal error. Mathematically 0 in semigroups of relations is the empty
relations (function which is never defined). If groupoid has more than one
element that 0 is not (left, right) identity.

4. Left zero (z ~ x) = z is an output, the final result of a computation. More
precisely if there is the zero then output can be described as ∀x (x 6= 0 ⊃
(z ~ x) = z) (left near-zero).

5. Right zero (x~ z) = z is at the same time so called ‘quine’ (program giving
itself) and an input, the initial value overriding all earlier. More precisely if
there is the zero then input can be described as ∀x (x 6= 0 ⊃ (x ~ z) = z)
(right near-zero).

6. Idempotent (z ~ z) = z is a pause.
7. Right contraction (a ~ f) = (a ~ g) ⊃ f = g is practically almost useless

property: each program acts differently on each elements than any others.
But there is an important exception. If our operation is associative and each
element has the inversion a◦a−1 = e; a−1◦a = e then our semigroup becomes
a group. Each space of bijective functions can be viewed as a group and vice
versa. Elementary fully invertible actions on some data type form a group.
In a group we can ‘prevent’ an action not only to undo it.

8. If (x~ a)~ ã = x then ã is a weak right inverse for a. It grants undoing
of a.

9. A one-way pipe p is such element that

(x~ p) = y ⊃ (y ~m) = 0.

10. A subgroupoid can be viewed as a block of program or construction.
11. Direct product of groupoids means that computation can be decomposed

into independent branches corresponding components of direct product.

So we see

Algebraic programming is functional and super-von-Neumann
by its essence.

Each groupoid generates the semigroup of actions

Definition 4. Action of groupoid element sequence f1, . . . , fn is a function

ϕf1;...;fn = λx. (. . . ((x~ f1)~ f2) . . .)~ fn).

This semigroup not always fully describes program actions.

Lemma 1. Actions of groupoid form a semigroup.

Proof. Composition of ϕf1;...;fn and ϕg1;...;gk is the action corresponding to

ϕf1;...;fn;g1;...;gk .

242 Nikolai N. Nepeivoda

To make algebraic computation more structured we will partially decompose
our groupoid into subsystems. Three main kinds of subsystems are:

1. block;
2. connector;
3. computation-control pair

Block is a subgroupoid. All actions with block elements do not lead out of
block. In the simplest case block has inside all its outputs and often also inputs as
corresponding algebraic values. To make our algebraic computation structured
we demand

If x and y are from different blocks then (x~ y) = 0.

There is an important transformation of groupoid. Dual groupoid G′ to G
is the groupoid with the same carrier and operation (x ∗ y) = (y ~ x). In both
program and technique realizations dual groupoid is implemented by the same
structure where arguments (signals) are exchanged. Dual to associative system
is associative.

(a ∗ (b ∗ c)) = (c ◦ b) ◦ a; ((a ∗ b) ∗ c) = c ◦ (b ◦ a).

Nevertheless when computing system is modeled as a groupoid dual system
to a subsystem is to be represented by another block. In this case we denote
the element of dual corresponding to a as a′. ′ is not an internal operation. In
realization a and a′ usually will be the same value, element or signal.

Connectors transfer information and control between blocks. They are out-
side connecting blocks. We demand for connectors c that if (x ~ c) = y then
(x ~ y) = 0. Two most valuable kinds of connectors are mirrors and one-way
pipes.

A mirror m is such an element that

(x~m) = y ≡ (ỹ′ ~m) = x̃′.

It seems now that mirrors and pipes are to be the only connectors admitted
in structured algebraic computations.

A computation-control pair is a groupoid decomposed into direct product
G1×G2 where G1 has no inputs and outputs. Realizing this pair we are to grant
that any output value computed in G2 will interrupt process in G1.

Example 6. Let a clever, brave and polite black cat is creeping up to mouse
in a black room. G1 here means a crawling process and G2 means a sensor
interrupting crawling and initializing attack when the mouse detects the cat.
We have the following diagram Crawling and attack easily are described by
semigroups (see [18]). Interruption and pipe are non-associative operators. Sensor
is almost associative and reversive: its actions form a group in which one element
is replaced by output.

Algebraic Structures of Programs 243

Mirror

Pipe

Fig. 2. Connectors

crawling

interruption

Attack

Fig. 3. Black polite cat

244 Nikolai N. Nepeivoda

Let us consider another interesting possibility arising because high order
essences arise in algebraic computing from the very beginning, on level of ele-
mentary actions.

It is known that current program systems are like to dinosaurs burdened
by gigatons of code. Usually explosive increasing of size of program systems is
considered as objective inevitable factor. But there is a side way.

Example 7. High order transformations can shorten programs and sometimes
computations in tower of exponents. For example compare two sequences of
definitions below

Φ1 = λf. λx. ((x f) f);
Φn+1 = λΨn. λΨn−1. ((Ψn−1 Ψn) Ψn).

(1)

(x (f (Φ1 . . . (Φn−2 (Φn−1 Φ
k
n)) . . .))) = (x f2

2 ... 2
(k times)) (2)

So groupoid induces at least two additional structures: finite order functionals
and the semigroup of actions. Higher order functionals need no extra support
here. To describe algebraic system effectively it suffices to add an operations
converting a system of elements into a single block.

4 General algebraic program structure (GAPS)

Considerations above lead to the formal notion. Let us denote an operation of
applying f to x by x ? f , an operation composing two elements into the single
block a ◦ b.

Definition 5. General algebraic program structure (GAPS) is a bigroupoid
where the following holds:

((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) (3)

((x ? f) ? g) = (x ? (f ◦ g)) (4)

If GAPS has unity and (or) zero they are to satisfy equations

(0 ? x) = (x ? 0) = 0 (5)

(x ? e) = x (6)

x ◦ 0 = 0 ◦ x = 0 (7)

e ◦ x = x ◦ e = x. (8)

So application is not necessary associative (and in fact we don’t need compo-
sition if it is associative) and composition is associative and gives us possibility
to encapsulate a number of elements into the single one. Unity is a right unity.

Lemma 2. Each groupoid G can be extended up to GAPS.

Algebraic Structures of Programs 245

Proof. Consider the following Horn theory. It has constants for all elements of
G. It includes the diagram of G (i. e. the set of true closed elementary formulas),
a new constant B and the axioms

((x ? f) ? g) = (x ? (f ? (g ?B))) (9)

(f ? ((g ? (h ?B)) ?B)) = ((f ? (g ?B)) ? (h ?B)) (10)

Its initial model is a desired GAPS.

We are sure that GAPS is in algebraic sense a minimal system describing ev-
ery imaginable collection of elementary actions and programs (constructs) com-
posed from them.

The second operation allows us to formulate many properties more expres-
sively and effectively.

Definition 6. An element x 6= 0 is a divisor of zero if there is such y 6= 0 that
x ◦ y = 0. An element y is a right inverse for x if x ◦ y = e. An element x−1 is
the inverse of x if x ◦ x−1 = x−1 ◦ x = e. Two elements are mutually inverse if
a ◦ b ◦ a = a, b ◦ a ◦ b = b.

So each of mutually inverse elements grants undoing (prevention) for another on
codomain (domain) of the last one (if they are partial functions).

The next simple theorem shows that every system of functions (every semi-
groups) can be enriched by every system of total program transformations, so it
is called theorem on abstract metacomputations. It needs some preliminary
discussion.

Remember the notion of enrichment for algebraic systems (its direct analogy
for classes in programming is called specialization). Let a signature σ1 extends a
signature σ. An algebra A1 in σ1 is enrichment of A in σ if all carriers, functions,
constants and predicates from σ are untouched.

Let there is a morphism α : G → (G → G) of the semigroup G into the
semigroup of maps of its carrier such that (e α) = λx. x, (0 α) = λx. 0. From
the programmer’s point of view it gives interpreter, translator, compiler or su-
percompiler giving an executable module for a high order program.

An example of such morphism. (x α) = λx. 0 for all divisors of zero. (x α) =
λx. x for others. x ? y = x ◦ y.

Theorem 2. Each semigroup G can be enriched to GAPS such that (x ? f) =
(x (f α)).

Proof. Laws for GAPS hold. Non-trivial is only (10).

((x ? f) ? g) = ((x (f α)) (g α)) = (x ((f α) ◦ (g α))) =

(x (f ◦ g α)) = (x ? (f ◦ g))

�

246 Nikolai N. Nepeivoda

Lemma 3. For each action ϕ of groupoid there is an element α such that
(x ? α) = (x ϕ).

Proof. Let f1, . . . , fn be an arbitrary action. Applying (4) and associativity of
◦ get

(. . . ((x~ f1)~ f2) . . .)~ fn) = (x~ f1 ◦ f2 · · · ◦ fn).

�

Example 8. Some ‘natural’ assumptions destroy GAPS. For example if
∀f (e ? f) = f two operations coincide.

(x ? y) = ((e ? x) ? y) = (e ? (x ◦ y)) = x ◦ y.

Consider this phenomenon. 0 is the fatal error and we cannot do with it inside
of system. e can be interpreted as an empty program but program transformer
can generate non-empty code starting from empty data. See example 14 below.

Example 9. Direct application of process to enrich groupoid to GAPS almost
always leads to infinite structure. Often it is possible to remove superfluous
constructs and get the finite GAPS.

Consider groupoid from the example 5.First of all we write down all dif-
ferent actions of groupoid in the form shorter result: longer sequence of

elements.

w: wwp, s: wss, p: psp, ws: wws, sw: www, ps: sss, sp: pss, wp: ppp, pw:
pwp,wsp: pps, spw: pww, pws: sws.

Semigroup of functions of actions consists of twelve elements and is not com-
mutative though initial groupoid is commutative. Often the groupoid operation
∗ can be extended to GAPS by different ways. For example here there are at
least two extensions:

(ws * sw) = wssw = wsw = ws;
(ws * sw) = (ws)*(s*w) = (ws)w = (w*w)(s*w) = ww = w.

Now consider a problem when and how we can join some system of pro-
gram transformations with a given program system (= a semigroup of program)
and to get the single language of metaprogramming. There are three natural
subproblems.

1. How to join a language with a system of transformation not changing the
language (the semigroup)?

2. How to preserve some sub-language (sub-semigroup) maybe converting other
constructions into transformations?

3. How to extend a language to a metalanguage not changing notions inside of
the given language?

Algebraic Structures of Programs 247

Definition 7. Let some system of transformations A is given as system of func-
tions on carrier of a semigroup G described by theory Th and desired properties
of transformations are written down as an axiomatic theory Th1. It is con-
servative if there is a GAPS enrichment AG of G such that every ϕ ∈ A is
represented as an action of groupoid (x ? α) = (x ϕ) for some α. It is conser-
vative over the subgroup G0 if it is conservative and in AG a ? b = a ◦ b for all
elements of G0. It is admissible if there is a semigroup G1 such that G ⊆ G1

and A is conservative for G1.
Let ThP is a theory Th in which all quantifiers are restricted by unary

predicate P : ∀xA(x) is replaced by ∀x (P (x) ⊃ A(x)); ∃xA(x) is replaced by
∃x (P (x)&A(x)).

A strongly admissible if it is admissible and for resulting algebra theories
Th1 and Th remain valid.

Lemma 4. Collection of actions A is conservative iff its closure is isomorphic
to subsemigroup of G.

Proof. By 3 if enrichment is successful then each element of the semigroup gener-
ated by A represents action of some element of G. Thus closure of A is embedded
into G.

Vice versa, if the closure of A can be embedded into G then each action from
A can be represented by its image by this embedding.
�

Example 10. Let there be only one action: inversion of programs M such that
((a M) M) = a. To enrich a semigroup od programs by this action is possible
iff there is an element of order 2 in this semigroup: f 6= e&f ◦ f = e. No matter
how this f acts as function.

Lemma 5. Collection of actions A is conservative over G0 iff there is monomor-
phism ψ of its closure into G such that for each f such that (f ψ) ∈ G0

(a f) = (a ◦ (f ψ)) holds.

Example 11. Using this criterion we can test possibility of enrichment up to
language of metacomputations considering strings as programs and remain un-
touched the sublanguage of numerical computations.

The following theorem is proved in [18]. Its proof requires model-theoretic
technique, is long and resulting construction is not always algorithmic one.

Theorem 3. (2012–2014) Let a system of actions A is described by a theory
Th1, and Th is a theory of semigroup G and P is a new unary predicate.
Then A is strongly admissible over G iff there is a partial surjection ψ : G→ A
such that (g1 ◦ g2 ψ) = (g1 ψ) ◦ (g2 ψ) if all results are defined and the theory
Th1 ∪ ThP is consistent.

There is an important consequence of this theorem.

248 Nikolai N. Nepeivoda

Proposition 1. Every set of actions A is admissible over G if both theories
consist only from facts (true formulas of the form [¬](a{◦, ∗}b) = c).

Example 12. Consider an additive group Z3 and add actions of its objects {0, 1, 2}
as well, scissors and paper from example 5. Their actions can be described as
functions on Z3 with values 002, 011, 212. Now we extend wsp-groupoid to twelve
elements semigroup as in example 9. To conform with it is necessary to add iden-
tity which don’t belongs to this closure and denote this monoid C. Consider a
direct product of C× Z3 and define actions as follows.

(〈c, x〉 ? 〈d, y〉) = 〈c ◦ d, (x+ y d)〉 .

This GAPS contains Z3. Elements of C can be considered as commands and
elements of Z3 as data. (x d) is application of sequence of actions to an element
coded by x and coding of the result. Commands transform as a semigroups but
their effects as groupoid.

There is another way to define GAPS on the same carrier.

(〈c, x〉 ? 〈d, y〉) = 〈(c ? d), (x+ y (c ? d))〉 .

Thus the problem is when this extension is computable. It can be infinite
and non-computable even for finite theories, finite semigroup and collection of
actions. Though this theorem is pure one it gives a valuable negative criterion.

A practical consequence. If a system of program transformations destroys
properties of program or forced to make different programs equal it is incorrect.

There is a particular case when our extension is semi-computable.

Definition 8. Horn formula (quasi-identity) is a formula

∀x1, . . . , xk (Q1& · · ·&Qn ⊃ P),

where xi all its variables, and all Qi, P are predicates.

If our theories consist of Horn axioms then GAPS can be constructed as the
factorization of the free GAPS according to provable identity of terms (the initial
model).

Example 13. Because λ-calculus lies in foundations of the modern mathematical
theory of Turing-complete program systems (see [11]) it suffices to construct a
model of λ-calculus as a GAPS. To do this we take an equivalent representation
of λ-calculus as combinatory logic and take its basis {I,B,C,S} [12] described
in our terms as

(x ? I) = x

(x ? (f ? (g ?B))) = ((x ? f) ? g)

(x ? (f ? (g ?C))) = ((x ? g) ? f)

(x ? (y ? (z ? S)) = ((x ? y) ? (x ? z)).

Algebraic Structures of Programs 249

Adding the axiom of associativity of composition B (10) and the definition

f ◦ g = (f ? (g ?B))

we get a model of λ-calculus and using this one we get models for all standard
and almost all non-standard programming languages.

To get a model for typed λ-calculus it suffices to add zero 0 and to redefine
? as zero when types are not conforming. To get the identity it suffices to add
the following axioms:

(I ? (f ?B)) = f (f ? (I ?B)) = f.

Example 14. One more example how to turn program system into GAPS. Let we
have an algorithmic language in which symbols are operators and concatenation
of strings is composition of programs (e.g. Brainfuck Brainfuck). Then empty
string is program doing nothing. It can be naturally represented as GAPS. a ◦ f
is simply concatenation. a?f will be defined as follows. If f is a correct program
then its value on a is a ? f . If f yields an error or it is syntactically incorrect
then our value is 0.

We see that the result of action over an empty program can be arbitrary.

Example 15. In 1972 one research stopped one little step before GAPS [16].
Consider the alphabet {K,S, (,)}. Its symbols translate into combinators as

(K ϕ) = K (S ϕ) = S (‘(’ ϕ) = B (‘)’ ϕ) = I

The result of string translation is defined recursively: (a is a symbol, σ is a
string):

(aσ ϕ) = ((σ ϕ) ? (a ϕ)).

This interpretation turns the combinatory logic into a Brainfuck-like pro-
gramming language. But resulting GAPS is not a GAPS for the combinatory
logic. It also includes syntactically incorrect constructs like))))SK((.

Example 16. If our semigroup is a monoid then universal function in GAPS is
trivial U = e:

(x ? (f ?U)) = (x ? f),

A partial evaluator is not trivial:

(f ? (x ?PE)) = (x ? f),

A fixed point operator
((f ?Y) ? f) = (f ?Y),

is trivial if there is 0: Y = 0.

GAPS can easily express some functional restrictions on the programs. For
example the papers [17, 18] are mathematically describing and investigating
GAPS for reversive, reversible and completely non-invertible programs are des.

250 Nikolai N. Nepeivoda

5 Some tools to compose algebraic programs

Algebraic programming is to be a collection of tools to compose and decompose
algebraic substructures of GAPS. Some of these tools were outlined for groupoids
in the section 3.

The important tool of (de)composition is the construct used in the example
12. Elements of Z3 can be considered as data and elements of the semigroup as
commands. Now we formulate a general case for this construction.

Definition 9. Semidirect product of GAPS. Let there are two GAPS: a GAPS
of commands C and a GAPS of data D. Let ϕ : C→ Hom(D,D) is a morphism
of the semigroup of commands into the semigroup of morphisms of data semi-
group. Then semidirect product C oD is C ×D with the following operations:

〈c1, d1〉 ◦ 〈c2, d2〉 = 〈c1 ◦ c2, d1 ◦ (d2 (c2 ϕ))〉
〈c1, d1〉 ? 〈c2, d2〉 = 〈c1 ? c2, d1 ? (d2 (c2 ϕ))〉 .

This is a generalization of the semidirect product for semigroups.
Now we introduce data types and their connectors taking into account that

each data is also an action and that there will be no direct information or control
flow from one type to other type.

Definition 10. Type systems on GAPS is a system of subGAPSes Ti such
that if i 6= j, a ∈ Ti, b ∈ Tj then (a ? b) = 0 and Ti ∩ Tj ⊇ {0}.

Connector (between Ti and TJ) is an element c not belonging to any type
such that if (a ? c) = b 6= 0 then there are i 6= j such that a ∈ Ti, b ∈ Tj.

Dual T ′i to type Ti is a GAPS for which there is a bijection to Ti x↔ xprime
such that if (x?y) = z then (z′?yprime)e = x′. Dual is perfect if (x◦y)′ = (y′◦x′.

Mirror is a connector m such that if (a ? m) = b, a ∈ Ti, b ∈ Tj then
(b′ ?m) = a′. Mirror is perfect if it is connector between Ti and its perfect dual
T ′i .

Reversive type is a subGAPS R for which there exists the ideal mirror M
such that for each x, y ∈ R

((x ? y)′ ? (y ? M)) = x′ ((x′ ? (y ? M))′ ? y) = x.

Crystal is a subGAPS where ? forms a group.
Pipe is a connector p such that (x ? p) = y 6= 0 ⊃ (y ? p) = 0.
Result element of type Ti is a left zero of Ti according to both operations.
Interruption structure is a type with a carrier T×{1, 2} where T is GAPS,

there are no results in T except maybe 0 and operations are defined as follows:

(〈a, 1〉 ? 〈b, x〉) = 〈(a ? b), x〉 ; (11)

(〈a, 2〉 ? 〈b, y〉) = 〈a, 2〉 if b 6= 0 (12)

Wheel is an interruption structure based on group Zn.
Interruption controlled type is a system of type Ti, interruption structure

S and the pipe p between Ti and {1, 2} such that (x ? p) = 1 if x is not a result
and (x ? p) = 2 if x is a result.

Algebraic Structures of Programs 251

Interruption controlled type can be easily represented through semidirect
product but in this representation the pipe (which is necessary for effective
program or physical realization) is hidden and the number of elements grows
essentially. Each type can be transformed into a type with a given subset of
results not disturbing the actions giving other than a result. Using these elements
we sometimes can reduce a very complex GAPS to a composition of types,
mirrors, pipes, semidirect products and interruption controls. We need no loops
and conditional statements here.

An example below shows how to compute a very large power of an element
of a given complex algebraic construct through a precomputed representation
of power in Fibonacci system. Almost all actions in this program (system) are
completely invertible (reversive) if given algebra of data is reversive. Only the
initialization of the system and the final interruption are non-invertible.

Example 17. Let us try to apply the same action a large number of times. This
corresponds to computing a ◦ bω in a group. Then ω is represented in Fibonacci
system. This can be easily made by usual computer. Let k be the number of bits
in the representation of ω. The two predicates are computed and transferred to
a reversive program: (i fib odd), (i fib even). The first one is 1 iff i is odd
and the corresponding digit is equal to 1. (i fib even) is the same for even
indexes.

Type loop is resulted from the additive group of integers making integer
0 its output value. Pipe sends its interrupt to externally implemented (maybe
physically) group tp which is controlled by two boolean commands exchanging
commutation of values during compositions, implemented by mirrors and de-
scribed as conditional operators. These mirrors use two precomputed arrays of
booleans to commute inputs of the next operations.

PROGRAM Fibonacci power
DEFINITIONS
int atom n
GROUP tn: external nooutputs
tp atom var a,b,d
tp atom e
(tp,tp) var c is (a,b)
constant e=E
INTERRUPTOR int loop output (0);
loop atom k
int atom var i [0..k] guarded
PIPE(interruption) p: (k,tn); boolean atom l;
predicate [i] fib odd, fib even
END DEFINITIONS

INPUT
read a, k
b← a

252 Nikolai N. Nepeivoda

i ← 1
l ← TRUE
d ← E
read fib odd, fib even
END INPUT

{i;1},
{l; ⊕ true}
par sync (k,tp,i)
{
tp{
{c; ◦ if l then (e,a) else (b,e) fi};
{d; ◦ if (i fib odd) then

a else if (i fib odd) then b else e
fi fi};

}
k{+ (-1)};
i{+ (1)};
}

OUTPUT
write d
END OUTPUT

Rough description of implementation of this program is given on fig. 4

6 Conclusion

The main mathematical result of this paper is Theorem 3. It states that many
kinds of programs and other computing schemes can be viewed as GAPS and
fully states conditions when a (partially described) system of transformations
can be correct for the given system. For example we need no descriptions of
usual programming languages here because they were described by the λ-calculus
which is GAPS.

The last section shows that complex algebras often can be reduced to struc-
tures formed with simpler ones in a way like to analog computers and structured
programming. Here is a big amount of open problems because (say) a systematic
mathematical theory of finite approximations for infinite algebraic systems do
not exists now (even for groups).

Maybe the most valuable property of GAPS is that they can be easily
adopted to describe functionally restricted classes of programs and computa-
tions. Some advanced results in this direction (for reversive, reversible, com-
pletely non-invertible programs and dynamic systems) are presented in [17, 18].
It appears now that algebraic programming and computing is the most general
existing concept and it is very flexible.

Algebraic Structures of Programs 253

Σ

2*k
0

a,b

b,a

Passive

Active

+1

+1
a,d

b,d

E

(f i)

-(f i)

i+1

Fig. 4. Program for Fibonacci-based computation

254 Nikolai N. Nepeivoda

Unfortunately using algebraic models and concepts demands deep knowledge
of abstract algebra and category theory and completely another way of thinking
then usual Turing-based algorithms and even then Lisp, Refal or Prolog.

Author wishes to thank prof. R. Glück for discussions during which the alge-
braic concept arose, PSI RAS for support an extremely non-conformist research,
his followers A. Nepejvoda and V. Atamanov for their valuable developments in
this completely unexplored domain.

References

1. Glushkov, V. M. Abstract Theory of Automata // Cleaver-Hume Press Ltd., 1963.
2. Maurer, W. D. A theory of computer instructions. Journal of the ACM, vol. 13,

No 2 (1966) pp. 226–235.
3. Gluschkow W. M., Zeitlin G. E., Justchenko J. L. — Algebra. Sprachen. Program-

mierung. — Akademie-Verlag, Berlin 1980. — 340 p.
4. Ivanov, P. M. Algebraic modelling of complex systems. — Moscow, 1996. — 274

p.
5. Nepejvoda, N. N. Three-headed Dragon. https://docs.google.com/document

/d/1hGzUB3p3j2zYcksoUnxtv7QamHzcgYVYr66iJJiMOhY
6. Alban Ponse and Mark B. van der Zwaag. An Introduction to Program and Thread

Algebra. LNCS 3988, 2006, pp 445–488.
7. Bergstra J. A., Bethke I, Ponse A. Program Algebra and Thread Algebra. Ams-

terdam, 2006, 114p.
8. Nepejvoda N. N. Reversivity, reversibility and retractability. Third international

Valentin Turchin workshop on metacomputation. Pereslavl: 2012. pp 203–215.
9. Girard J.-Y. Linear Logic. Theoretical Computer Science 50, 1987, 102 pp.

10. Malcev, A.I. Algebraic Systems. Springer-Verlag, 1973, ISBN 0-387-05792-7.
11. Mitchell, J. C. Foundation for programming languages, MIT, 1996.
12. Barenfregt, H. The lambda-calculus. Its syntax and semantics. Elsevier 1984, ISBN

0-444-87508-5.
13. Nepejvoda, N. N. Reversive constructive logics. Logical Investigations, 15, 150–169

(2008).
14. Axelsen, H. G., Glück, R. What do reversible programs compute? FOCSSACS

2011, LNCS 6604, pp. 42–56, 2011
15. http://www.muppetlabs.com/ breadbox/bf/
16. Böhm, C., Dezani-Ciancaglini, M. Can syntax be ignored during translation? In:

Nivat M. (ed.) Automata, languages and programming. North-Holland, Amster-
dam, 1972. p.197–207.

17. Nepejvoda, N. N. Abstract algebras of different classes of programs. Proceedings of
the 3rd international conference on applicative computation systems (ACS’2012),
103–128.

18. Nepejvoda, N. N. Algebraic approach to control. Control Sciences, 2013, N 6, 2-14.

Author Index

Dever, Michael, 11

Grechanik, Sergei A., 26, 54

Hamilton, G.W., 11, 94, 110

Inoue, Jun, 79

Jones, Neil D., 94

Kannan, Venkatesh, 110

Klimov, Andrei V., 124
Klimov, Arkady V., 136
Klyuchnikov, Ilya G., 54, 161
Krustev, Dimitur Nikolaev, 177

Mironov, Andrew M., 194

Nepejvoda, Antonina N., 223
Nepejvoda, Nikolai N., 236

Romanenko, Sergei A., 54

Научное издание

Труды конференции

Сборник трудов Четвертого международного семинара по метавычислениям
имени В.Ф. Турчина, г. Переславль-Залесский, 29 июня – 3 июля 2014 г.

Под редакцией А. В. Климова и С. А. Романенко.

Для научных работников, аспирантов и студентов.

Издательство «Университет города Переславля»,
152020 г. Переславль-Залесский, ул. Советская 2.

Гарнитура Computer Modern. Формат 60×84/16.
Дизайн обложки: Н. А. Федотова. Уч. изд. л. 14,5.
Усл. печ. л. 14,9. Подписано к печати 10.06.2014.
Ответственный за выпуск: С. М. Абрамов.

Отпечатано в ООО «Регион». Печать цифровая. Бумага офсетная. Тираж 150 экз. Заказ 3.
152025 Ярославская область, г. Переславль-Залесский, ул. Строителей, д. 41.

	AutoPar: Automating the Parallelization of Functional Programs
	Inductive Prover Based on Equality Saturation for a Lazy Functional Language (Extended Version)
	Staged Multi-Result Supercompilation: Filtering by Transformation
	Supercompiling with Staging
	Towards Understanding Superlinear Speedup by Distillation
	Extracting Data Parallel Computations from Distilled Programs
	On Valentin Turchin�s Works on Cybernetic Philosophy, Computer Science and Mathematics
	Construction of Exact Polyhedral Model for Affine Programs with Data Dependent Conditions
	Nullness Analysis of Java Bytecode via Supercompilation over Abstract Values
	An Approach for Modular Verification of Multi-Result Supercompilers (Work in Progress)
	A Method of a Proof of Observational Equivalence of Processes
	Turchin's Relation and Subsequence Relation on Traces Generated by Prefix Grammars
	Algebraic Structures of Programs: First Steps to Algebraic Programming

